底的根除
发表于 2025-3-21 19:49:28
书目名称Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0163812<br><br> <br><br>书目名称Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0163812<br><br> <br><br>书目名称Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0163812<br><br> <br><br>书目名称Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0163812<br><br> <br><br>书目名称Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0163812<br><br> <br><br>书目名称Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0163812<br><br> <br><br>书目名称Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0163812<br><br> <br><br>书目名称Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0163812<br><br> <br><br>书目名称Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0163812<br><br> <br><br>书目名称Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0163812<br><br> <br><br>
MAIZE
发表于 2025-3-21 20:48:00
https://doi.org/10.1007/978-94-011-1660-2With emphasis on meteorological applications, we discuss here the fluid dynamical fundamental governing equations, their nondimensionalization including the identification of key nondimensional parameters, and a general approach to meteorological modelling based on multiple scales asymptotics.
grieve
发表于 2025-3-22 03:33:39
http://reply.papertrans.cn/17/1639/163812/163812_3.png
蒙太奇
发表于 2025-3-22 05:25:35
http://reply.papertrans.cn/17/1639/163812/163812_4.png
不安
发表于 2025-3-22 09:26:32
http://reply.papertrans.cn/17/1639/163812/163812_5.png
conjunctiva
发表于 2025-3-22 14:21:54
Asymptotic Theory of Separated Flows,Separation is a fluid dynamic phenomenon that influences the behaviour of a wide variety of liquid and gas flows. The difference between an attached flow and its separated counterpart is demonstrated in Figure 1 where the theoretical streamline pattern, given by the classical solution of the inviscid flow theory
Aprope
发表于 2025-3-22 18:09:14
http://reply.papertrans.cn/17/1639/163812/163812_7.png
山顶可休息
发表于 2025-3-23 00:16:00
http://reply.papertrans.cn/17/1639/163812/163812_8.png
含糊
发表于 2025-3-23 02:40:01
https://doi.org/10.1007/978-0-387-68407-9d PDE problems. It has been successfully used in a wide variety of applications (cf. Kevorkian and Cole (1993), Lagerstrom (1988), Dyke (1975)). However, there are certain special classes of problems where this method has some apparent limitations.
喃喃而言
发表于 2025-3-23 06:26:12
http://reply.papertrans.cn/17/1639/163812/163812_10.png