Denial 发表于 2025-3-21 19:13:51

书目名称Asymptotic Analysis影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0163769<br><br>        <br><br>书目名称Asymptotic Analysis影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0163769<br><br>        <br><br>书目名称Asymptotic Analysis网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0163769<br><br>        <br><br>书目名称Asymptotic Analysis网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0163769<br><br>        <br><br>书目名称Asymptotic Analysis被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0163769<br><br>        <br><br>书目名称Asymptotic Analysis被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0163769<br><br>        <br><br>书目名称Asymptotic Analysis年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0163769<br><br>        <br><br>书目名称Asymptotic Analysis年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0163769<br><br>        <br><br>书目名称Asymptotic Analysis读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0163769<br><br>        <br><br>书目名称Asymptotic Analysis读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0163769<br><br>        <br><br>

Estrogen 发表于 2025-3-21 21:47:51

http://reply.papertrans.cn/17/1638/163769/163769_2.png

harbinger 发表于 2025-3-22 03:05:26

http://reply.papertrans.cn/17/1638/163769/163769_3.png

救护车 发表于 2025-3-22 08:25:09

W. Kent Fuchs,Neal J. Alewine,Wen-mei Hwuain a geometric picture of the flow in 4-space. An application of the theory is found in the model problem of Contopoulos for the Hamiltonian H=1/2(x.+y.)+1/2(ω .x.+ω.y.)−εxy.. A comparison with numerical results obtained earlier yields excellent agreement and we put Contopoulos‘ formal «third» integral in a new perspective.

独轮车 发表于 2025-3-22 10:57:44

http://reply.papertrans.cn/17/1638/163769/163769_5.png

Boycott 发表于 2025-3-22 15:01:38

,Approximations of higher order resonances with an application to Contopoulos’ model problem,ain a geometric picture of the flow in 4-space. An application of the theory is found in the model problem of Contopoulos for the Hamiltonian H=1/2(x.+y.)+1/2(ω .x.+ω.y.)−εxy.. A comparison with numerical results obtained earlier yields excellent agreement and we put Contopoulos‘ formal «third» integral in a new perspective.

angiography 发表于 2025-3-22 19:13:21

http://reply.papertrans.cn/17/1638/163769/163769_7.png

幸福愉悦感 发表于 2025-3-22 22:45:23

http://reply.papertrans.cn/17/1638/163769/163769_8.png

审问,审讯 发表于 2025-3-23 03:45:16

http://reply.papertrans.cn/17/1638/163769/163769_9.png

ablate 发表于 2025-3-23 08:57:28

http://reply.papertrans.cn/17/1638/163769/163769_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Asymptotic Analysis; From Theory to Appli Ferdinand Verhulst Conference proceedings 1979 Springer-Verlag Berlin Heidelberg 1979 Analysis.As