Gullet 发表于 2025-3-21 16:05:38
书目名称Artificial Neural Networks - ICANN 96影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0162703<br><br> <br><br>书目名称Artificial Neural Networks - ICANN 96影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0162703<br><br> <br><br>书目名称Artificial Neural Networks - ICANN 96网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0162703<br><br> <br><br>书目名称Artificial Neural Networks - ICANN 96网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0162703<br><br> <br><br>书目名称Artificial Neural Networks - ICANN 96被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0162703<br><br> <br><br>书目名称Artificial Neural Networks - ICANN 96被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0162703<br><br> <br><br>书目名称Artificial Neural Networks - ICANN 96年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0162703<br><br> <br><br>书目名称Artificial Neural Networks - ICANN 96年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0162703<br><br> <br><br>书目名称Artificial Neural Networks - ICANN 96读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0162703<br><br> <br><br>书目名称Artificial Neural Networks - ICANN 96读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0162703<br><br> <br><br>ROOF 发表于 2025-3-21 23:28:38
http://reply.papertrans.cn/17/1628/162703/162703_2.pngCreditee 发表于 2025-3-22 03:38:04
Autoassociative memory with high storage capacity,y with the number of inputs per neuron is far greater than the linear growth in the famous Hopfield network . This paper shows that the GNU attains an even higher capacity with the use of pyramids of neurons instead of single neurons as its nodes. The paper also shows that the storage capacity/co小画像 发表于 2025-3-22 06:35:42
http://reply.papertrans.cn/17/1628/162703/162703_4.png易改变 发表于 2025-3-22 08:51:14
http://reply.papertrans.cn/17/1628/162703/162703_5.pngConcerto 发表于 2025-3-22 15:54:22
http://reply.papertrans.cn/17/1628/162703/162703_6.png繁荣地区 发表于 2025-3-22 21:04:45
Bayesian inference of noise levels in regression,puts, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input v持续 发表于 2025-3-22 23:47:45
Complexity reduction in probabilistic neural networks,tionally prohibitive, as all training data need to be stored and each individual training vector gives rise to a new term of the estimate. Given an original training sample of size . in a .-dimensional space, a simple binned kernel estimate with .+4) terms can be shown to attain an estimation accuramettlesome 发表于 2025-3-23 02:03:10
http://reply.papertrans.cn/17/1628/162703/162703_9.pngexquisite 发表于 2025-3-23 05:36:24
Regularization by early stopping in single layer perceptron training,scriminant function. On the way between these two classifiers one has a regularized discriminant analysis. That is equivalent to the “weight decay” regularization term added to the cost function. Thus early stopping plays a role of regularization of the network.