粗野的整个 发表于 2025-3-21 16:57:36

书目名称Artificial Neural Networks - ICANN 2010影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0162698<br><br>        <br><br>书目名称Artificial Neural Networks - ICANN 2010影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0162698<br><br>        <br><br>书目名称Artificial Neural Networks - ICANN 2010网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0162698<br><br>        <br><br>书目名称Artificial Neural Networks - ICANN 2010网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0162698<br><br>        <br><br>书目名称Artificial Neural Networks - ICANN 2010被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0162698<br><br>        <br><br>书目名称Artificial Neural Networks - ICANN 2010被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0162698<br><br>        <br><br>书目名称Artificial Neural Networks - ICANN 2010年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0162698<br><br>        <br><br>书目名称Artificial Neural Networks - ICANN 2010年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0162698<br><br>        <br><br>书目名称Artificial Neural Networks - ICANN 2010读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0162698<br><br>        <br><br>书目名称Artificial Neural Networks - ICANN 2010读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0162698<br><br>        <br><br>

小教堂 发表于 2025-3-21 20:40:10

H. R. Koelz,P. G. Lankisch,S. Müller-LissnerTri-Class SVMs. The proposed framework is applied to facial expressions recognition task. The results show that . can exploit effectively the independent views and the unlabeled data to improve the recognition accuracy of facial expressions.

placebo 发表于 2025-3-22 02:58:10

http://reply.papertrans.cn/17/1627/162698/162698_3.png

大酒杯 发表于 2025-3-22 07:29:54

http://reply.papertrans.cn/17/1627/162698/162698_4.png

expound 发表于 2025-3-22 12:38:56

Electrical Circuits of Ordinary Capacitorsng algorithm which has been found to have numerous advantages over Evolution Strategies. Our empirical results confirm the promise of this approach, and we discuss how it can be scaled up to expert-level Go players.

evanescent 发表于 2025-3-22 15:25:59

http://reply.papertrans.cn/17/1627/162698/162698_6.png

发誓放弃 发表于 2025-3-22 18:35:51

http://reply.papertrans.cn/17/1627/162698/162698_7.png

调色板 发表于 2025-3-23 00:53:40

Hidden Markov Model for Human Decision Process in a Partially Observable Environment), which incorporates inference of a hidden variable in the environment and switching between exploration and exploitation. Our HMM-based model well reproduced the human behaviors, suggesting the human subjects actually performed exploration and exploitation to effectively adapt to this uncertain environment.

BRAWL 发表于 2025-3-23 03:15:12

Representing, Learning and Extracting Temporal Knowledge from Neural Networks: A Case Studyis again symbolically represented, incorporating both initial model and learned specification, as shown by our case study. The case study illustrates how the integration of methodologies and principles from distinct AI areas can be relevant to build robust intelligent systems.

SUE 发表于 2025-3-23 08:06:52

Multi-Dimensional Deep Memory Atari-Go Players for Parameter Exploring Policy Gradientsng algorithm which has been found to have numerous advantages over Evolution Strategies. Our empirical results confirm the promise of this approach, and we discuss how it can be scaled up to expert-level Go players.
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Artificial Neural Networks - ICANN 2010; 20th International C Konstantinos Diamantaras,Wlodek Duch,Lazaros S. Il Conference proceedings 201