invigorating 发表于 2025-3-21 19:52:50

书目名称Artificial Neural Networks and Machine Learning – ICANN 2023影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0162669<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0162669<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0162669<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0162669<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0162669<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0162669<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0162669<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0162669<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0162669<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0162669<br><br>        <br><br>

Patrimony 发表于 2025-3-21 23:15:17

,Membership-Grade Based Prototype Rectification for Fine-Grained Few-Shot Classification,r-class and high intra-class differences properties of fine-grained datasets, the prototype-based approach, which originally performed well in general FS classification, could not achieve the expected results. In this paper, we propose a transductive method consisting of a feature mapping module and

做作 发表于 2025-3-22 00:55:26

http://reply.papertrans.cn/17/1627/162669/162669_3.png

空中 发表于 2025-3-22 05:52:54

http://reply.papertrans.cn/17/1627/162669/162669_4.png

OWL 发表于 2025-3-22 11:36:18

http://reply.papertrans.cn/17/1627/162669/162669_5.png

DALLY 发表于 2025-3-22 16:27:07

,Multi-task Learning for Mongolian Morphological Analysis, in many Mongolian NLP applications. Recently, end-to-end neural approaches have achieved excellent results in the MMA task. However, these approaches handle morphological segmentation and morphological tagging independently, and ignore the relationship between the two subtasks. In this paper, we pr

CHANT 发表于 2025-3-22 17:33:50

http://reply.papertrans.cn/17/1627/162669/162669_7.png

民间传说 发表于 2025-3-23 00:38:54

Mutual Information Dropout: Mutual Information Can Be All You Need,ny ways on Dropout, they are still either inefficient on improving generalization ability or not effective enough. In this paper, we propose Mutual Information Dropout, which is an efficient Dropout based on dropping neurons with low mutual information. In Mutual Information Dropout, instead of rand

使厌恶 发表于 2025-3-23 02:26:32

,Non-Outlier Pseudo-Labeling for Short Text Clustering,wever, suffer from inaccurate estimation of either instance-level correlation or cluster-level discrepancy of data and strongly relay on the quality of the initial text representation. In this paper, we propose a Non-outlier Pseudo-labeling-based Short Text Clustering (NPLC) method, which consists o

革新 发表于 2025-3-23 06:18:49

http://reply.papertrans.cn/17/1627/162669/162669_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe