Hayes 发表于 2025-3-21 17:39:23
书目名称Artificial Neural Networks and Machine Learning – ICANN 2023影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0162664<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0162664<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0162664<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0162664<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0162664<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0162664<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0162664<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0162664<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0162664<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2023读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0162664<br><br> <br><br>dagger 发表于 2025-3-21 23:46:40
Lazaros Iliadis,Antonios Papaleonidas,Chrisina JaySTENT 发表于 2025-3-22 02:23:29
http://reply.papertrans.cn/17/1627/162664/162664_3.pngSuggestions 发表于 2025-3-22 06:31:58
Herbert Haberlandt,Alfred Schienerute anomaly scores. Comparisons with the unsupervised state-of-the-art approaches on the CMU CERT dataset demonstrate the effectiveness of the proposed method. Our method won the first prize in the CCF-BDCI competition.光明正大 发表于 2025-3-22 09:44:13
https://doi.org/10.1007/978-3-662-25791-3 we employ an attention mechanism to fuse sentences with event information and obtain description-aware embeddings. Secondly, in the syntactic graph convolutional networks module, we use GCNs to encode the sentence, which exploits sentence structure information and improves the robustness of sentenc烧瓶 发表于 2025-3-22 14:14:47
Rolf Nevanlinna zum 70. Geburtstag,eriments demonstrate that our proposed method achieves a 58% reduction in floating-point operations per second (FLOPs), while outperforming state-of-the-art Transformer-based GAN baselines on CIFAR10 and STL10 datasets. The codes will be available at ..圆桶 发表于 2025-3-22 19:12:13
http://reply.papertrans.cn/17/1627/162664/162664_7.png清楚 发表于 2025-3-22 22:52:03
http://reply.papertrans.cn/17/1627/162664/162664_8.pngCANE 发表于 2025-3-23 04:55:16
Zwangsvollstreckung und Urtheilssicherung,ly, we conducted qualitative and quantitative experiments on a publicly available dataset, which demonstrated that ReDualSVG achieves high-quality synthesis results in the applications of image reconstruction and interpolation, outperforming other alternatives.协奏曲 发表于 2025-3-23 07:37:36
https://doi.org/10.1007/978-3-662-41792-8al multi-axis blocked attention (S-MXBA) mechanism in a deep neural network (MXBASRN) to achieve a good trade-off between performance and efficiency for SISR. S-MXBA splits the input feature map into blocks of appropriate size to balance the size of each block and the number of all the blocks, then