厨房默契 发表于 2025-3-21 17:46:01
书目名称Artificial Neural Networks and Machine Learning – ICANN 2021影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0162654<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0162654<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0162654<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0162654<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0162654<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0162654<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0162654<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0162654<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0162654<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0162654<br><br> <br><br>agonist 发表于 2025-3-22 00:12:02
http://reply.papertrans.cn/17/1627/162654/162654_2.pngInflux 发表于 2025-3-22 00:49:32
How to Compare Adversarial Robustness of Classifiers from a Global Perspectivey of and trust in machine learning models, but the construction of more robust models hinges on a rigorous understanding of adversarial robustness as a property of a given model. Point-wise measures for specific threat models are currently the most popular tool for comparing the robustness of classi心神不宁 发表于 2025-3-22 08:05:04
http://reply.papertrans.cn/17/1627/162654/162654_4.pngManifest 发表于 2025-3-22 12:37:32
http://reply.papertrans.cn/17/1627/162654/162654_5.pngSpinal-Fusion 发表于 2025-3-22 13:27:42
http://reply.papertrans.cn/17/1627/162654/162654_6.pngcutlery 发表于 2025-3-22 17:46:15
Statistical Certification of Acceptable Robustness for Neural Networksrk verification and validation, do not fully meet our criteria for robustness measurement. From the industrial point-of-view, this paper proposes to use statistical robustness certificates (SRC) for measuring the robustness of neural networks against random noises as well as semantic perturbations a滑稽 发表于 2025-3-22 21:22:45
http://reply.papertrans.cn/17/1627/162654/162654_8.png流逝 发表于 2025-3-23 03:24:40
CmaGraph: A TriBlocks Anomaly Detection Method in Dynamic Graph Using Evolutionary Community Represee accurate community structures in a dynamic graph. This paper introduces CmaGraph, a TriBlocks framework using an innovative deep metric learning block to measure the distances between vertices within and between communities from an evolution community detection block. A one-class anomaly detection变态 发表于 2025-3-23 06:22:11
http://reply.papertrans.cn/17/1627/162654/162654_10.png