fungus 发表于 2025-3-21 17:01:20
书目名称Artificial Neural Networks and Machine Learning – ICANN 2021影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0162653<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0162653<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0162653<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0162653<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0162653<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0162653<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0162653<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0162653<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0162653<br><br> <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2021读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0162653<br><br> <br><br>FATAL 发表于 2025-3-21 21:22:56
http://reply.papertrans.cn/17/1627/162653/162653_2.pngBlood-Clot 发表于 2025-3-22 04:08:17
http://reply.papertrans.cn/17/1627/162653/162653_3.png过多 发表于 2025-3-22 07:59:08
http://reply.papertrans.cn/17/1627/162653/162653_4.pngBALK 发表于 2025-3-22 11:22:26
http://reply.papertrans.cn/17/1627/162653/162653_5.pngHAIL 发表于 2025-3-22 13:15:26
http://reply.papertrans.cn/17/1627/162653/162653_6.png假设 发表于 2025-3-22 20:03:13
http://reply.papertrans.cn/17/1627/162653/162653_7.png熟练 发表于 2025-3-22 23:27:00
https://doi.org/10.1007/3-540-32481-Xe state of the art. In this paper, we build upon previous work about onset detection using Echo State Networks (ESNs) that have achieved comparable results to CNNs. We show that unsupervised pre-training of the ESN leads to similar results whilst reducing the model complexity.梯田 发表于 2025-3-23 04:54:47
https://doi.org/10.1007/978-3-662-07200-4ter fine-tune the encoder. Combining the above work, we propose a deep multi-embedded self-supervised model(DMESSM) for short text clustering. We compare our DMESSM with the state-of-the-art methods in head-to-head comparisons on benchmark datasets, which indicates that our method outperforms them.caldron 发表于 2025-3-23 07:59:50
Statistical Characteristics of Deep Representations: An Empirical Investigations observable. The results indicate that manipulation of statistical characteristics can be helpful for improving performance, but only indirectly through its influence on learning dynamics or its tuning effects.