deferential 发表于 2025-3-21 19:04:42

书目名称Artificial Neural Networks and Machine Learning – ICANN 2020影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0162649<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2020影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0162649<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2020网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0162649<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2020网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0162649<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2020被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0162649<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2020被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0162649<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2020年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0162649<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2020年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0162649<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2020读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0162649<br><br>        <br><br>书目名称Artificial Neural Networks and Machine Learning – ICANN 2020读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0162649<br><br>        <br><br>

详细目录 发表于 2025-3-21 20:18:15

http://reply.papertrans.cn/17/1627/162649/162649_2.png

FOVEA 发表于 2025-3-22 03:05:34

http://reply.papertrans.cn/17/1627/162649/162649_3.png

使成核 发表于 2025-3-22 07:52:06

https://doi.org/10.1007/978-3-642-47908-3rns the sequence specificity of ATAC-seq’s enzyme Tn5 on naked DNA. We found binding preferences and demonstrate that cleavage patterns specific to Tn5 can successfully be discovered by the means of convolutional neural networks. Such models can be combined with accessibility analysis in the future

Limpid 发表于 2025-3-22 09:21:05

https://doi.org/10.1007/978-3-662-01374-8d by exploiting learned online generative models of finger kinematics. The proposed architecture provides a highly flexible framework for the integration of accurate generative models with high-dimensional motion in real-time inference and control problems.

AWE 发表于 2025-3-22 14:59:29

Convolutional Neural Networks with Reusable Full-Dimension-Long Layers for Feature Selection and Claby interpreting the layers’ weights, which allows understanding of the knowledge about the data cumulated in the network’s layers. The approach, based on a fuzzy measure, allows using Choquet integral to aggregate the knowledge generated in the layer weights and understanding which features (EEG ele

吹气 发表于 2025-3-22 18:13:20

http://reply.papertrans.cn/17/1627/162649/162649_7.png

皮萨 发表于 2025-3-22 22:06:31

Learning Tn5 Sequence Bias from ATAC-seq on Naked Chromatinrns the sequence specificity of ATAC-seq’s enzyme Tn5 on naked DNA. We found binding preferences and demonstrate that cleavage patterns specific to Tn5 can successfully be discovered by the means of convolutional neural networks. Such models can be combined with accessibility analysis in the future

愉快吗 发表于 2025-3-23 03:11:40

Reactive Hand Movements from Arm Kinematics and EMG Signals Based on Hierarchical Gaussian Process Dd by exploiting learned online generative models of finger kinematics. The proposed architecture provides a highly flexible framework for the integration of accurate generative models with high-dimensional motion in real-time inference and control problems.

值得赞赏 发表于 2025-3-23 08:29:59

http://reply.papertrans.cn/17/1627/162649/162649_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2020; 29th International C Igor Farkaš,Paolo Masulli,Stefan Wermter Conference proc