与生 发表于 2025-3-21 20:09:57
书目名称Artificial Intelligence. ECAI 2023 International Workshops影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0162559<br><br> <br><br>书目名称Artificial Intelligence. ECAI 2023 International Workshops影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0162559<br><br> <br><br>书目名称Artificial Intelligence. ECAI 2023 International Workshops网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0162559<br><br> <br><br>书目名称Artificial Intelligence. ECAI 2023 International Workshops网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0162559<br><br> <br><br>书目名称Artificial Intelligence. ECAI 2023 International Workshops被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0162559<br><br> <br><br>书目名称Artificial Intelligence. ECAI 2023 International Workshops被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0162559<br><br> <br><br>书目名称Artificial Intelligence. ECAI 2023 International Workshops年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0162559<br><br> <br><br>书目名称Artificial Intelligence. ECAI 2023 International Workshops年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0162559<br><br> <br><br>书目名称Artificial Intelligence. ECAI 2023 International Workshops读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0162559<br><br> <br><br>书目名称Artificial Intelligence. ECAI 2023 International Workshops读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0162559<br><br> <br><br>CANON 发表于 2025-3-21 23:10:29
http://reply.papertrans.cn/17/1626/162559/162559_2.pngHERE 发表于 2025-3-22 03:06:03
Evaluation of Human-Understandability of Global Model Explanations Using Decision Treestic and local explanation approaches are deemed interpretable and sufficient in many applications. However, in domains like healthcare, where end users are patients without AI or domain expertise, there is an urgent need for model explanations that are more comprehensible and instil trust in the moMerited 发表于 2025-3-22 06:37:11
http://reply.papertrans.cn/17/1626/162559/162559_4.pngInsatiable 发表于 2025-3-22 10:49:08
http://reply.papertrans.cn/17/1626/162559/162559_5.pngjustify 发表于 2025-3-22 13:50:37
Towards Explainable Deep Domain Adaptation Transfer learning and, in particular, domain adaptation allows to overcome this issue, by adapting the source model to a new target data distribution and therefore generalizing the knowledge from source to target domain. In this work, we present a method that makes the adaptation process more trans物质 发表于 2025-3-22 18:52:07
http://reply.papertrans.cn/17/1626/162559/162559_7.png权宜之计 发表于 2025-3-23 01:12:42
Deep Reinforcement Learning of Autonomous Control Actions to Improve Bus-Service Regularityat buses operating on the same route start to catch up with each other, severely impacting the regularity and the quality of the service. Control actions such as Bus Holding and Stop Skipping can be used to regulate the service and adjust the headway between two buses. Traditionally, this phenomenon多节 发表于 2025-3-23 03:15:17
http://reply.papertrans.cn/17/1626/162559/162559_9.png防止 发表于 2025-3-23 09:22:55
http://reply.papertrans.cn/17/1626/162559/162559_10.png