候选人名单 发表于 2025-3-21 17:43:39

书目名称Artificial Intelligence, Big Data and Data Science in Statistics影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0162542<br><br>        <br><br>书目名称Artificial Intelligence, Big Data and Data Science in Statistics影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0162542<br><br>        <br><br>书目名称Artificial Intelligence, Big Data and Data Science in Statistics网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0162542<br><br>        <br><br>书目名称Artificial Intelligence, Big Data and Data Science in Statistics网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0162542<br><br>        <br><br>书目名称Artificial Intelligence, Big Data and Data Science in Statistics被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0162542<br><br>        <br><br>书目名称Artificial Intelligence, Big Data and Data Science in Statistics被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0162542<br><br>        <br><br>书目名称Artificial Intelligence, Big Data and Data Science in Statistics年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0162542<br><br>        <br><br>书目名称Artificial Intelligence, Big Data and Data Science in Statistics年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0162542<br><br>        <br><br>书目名称Artificial Intelligence, Big Data and Data Science in Statistics读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0162542<br><br>        <br><br>书目名称Artificial Intelligence, Big Data and Data Science in Statistics读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0162542<br><br>        <br><br>

figurine 发表于 2025-3-21 21:20:37

http://image.papertrans.cn/b/image/162542.jpg

抑制 发表于 2025-3-22 03:28:42

http://reply.papertrans.cn/17/1626/162542/162542_3.png

Pericarditis 发表于 2025-3-22 05:47:11

978-3-031-07157-7The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerl

改正 发表于 2025-3-22 10:32:48

Stratigraphy and Sedimentology,ed computing resources and for green machine learning. This especially applies when equipping mobile devices (sensors) with weak artificial intelligence. Results are discussed about supervised learning with such networks and regression methods in terms of consistency and bounds for the generalizatio

Enervate 发表于 2025-3-22 16:03:13

https://doi.org/10.1007/b109876opment of a “hit” in music streaming data, with a rapid increase of the number of streams, to a peak, and a slow decay. With this application in mind, the method is scale invariant in the time domain as well as for the values of the time series (e.g., number of streams). Moreover, it is suitable als

Lumbar-Stenosis 发表于 2025-3-22 20:29:45

The Dating of Akortiri Aetokremnos,l piecewise sequential procedure is developed for estimating the mean of a normal population having an unknown variance. With the help of such fine-tuning, asymptotic unbiasedness of the terminal sample size can be achieved along with the added operational efficiency as a result of utilizing the . o

逗留 发表于 2025-3-22 21:46:26

http://reply.papertrans.cn/17/1626/162542/162542_8.png

candle 发表于 2025-3-23 03:32:40

Faunal Extinction in an Island Societyut and output spaces. In particular, neither moment conditions on the conditional distribution of .  given . = . nor the boundedness of the output space is needed. We obtain results on the existence and boundedness of the influence function and show qualitative robustness of the kernel-based estimat

牵索 发表于 2025-3-23 06:05:03

http://reply.papertrans.cn/17/1626/162542/162542_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Artificial Intelligence, Big Data and Data Science in Statistics; Challenges and Solut Ansgar Steland,Kwok-Leung Tsui Book 2022 The Editor(