Mosquito 发表于 2025-3-21 16:34:35
书目名称Artificial Intelligence for Materials Science影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0162386<br><br> <br><br>书目名称Artificial Intelligence for Materials Science影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0162386<br><br> <br><br>书目名称Artificial Intelligence for Materials Science网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0162386<br><br> <br><br>书目名称Artificial Intelligence for Materials Science网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0162386<br><br> <br><br>书目名称Artificial Intelligence for Materials Science被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0162386<br><br> <br><br>书目名称Artificial Intelligence for Materials Science被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0162386<br><br> <br><br>书目名称Artificial Intelligence for Materials Science年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0162386<br><br> <br><br>书目名称Artificial Intelligence for Materials Science年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0162386<br><br> <br><br>书目名称Artificial Intelligence for Materials Science读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0162386<br><br> <br><br>书目名称Artificial Intelligence for Materials Science读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0162386<br><br> <br><br>arcane 发表于 2025-3-21 21:30:16
http://reply.papertrans.cn/17/1624/162386/162386_2.pngArdent 发表于 2025-3-22 01:04:37
Accelerated Discovery of Thermoelectric Materials Using Machine Learning,s, which has accelerated the discovery of highly efficient thermoelectric materials. Details of commonly used strategies and methods to select a relevant descriptor set for developing the prediction models will be covered. A new approach for selecting descriptors by analyzing the high-throughput pro善变 发表于 2025-3-22 06:57:27
http://reply.papertrans.cn/17/1624/162386/162386_4.pngHarridan 发表于 2025-3-22 12:34:10
http://reply.papertrans.cn/17/1624/162386/162386_5.pngRobust 发表于 2025-3-22 15:23:03
Status quo 2015 – Rahmenbedingungenxpensive, highly efficient, and easily transferable, have been employed to accelerate HEA development. This chapter will give an overview of HEAs (fundamentals, preparations, and properties) and introduce recent progress in ML-assisted design of HEAs (microstructure and property predictions).抛弃的货物 发表于 2025-3-22 18:38:39
http://reply.papertrans.cn/17/1624/162386/162386_7.pngPelvic-Floor 发表于 2025-3-22 22:04:37
http://reply.papertrans.cn/17/1624/162386/162386_8.pngMIR 发表于 2025-3-23 02:42:09
Tote Zonen in den Meeren – der P/N-Kreislauf, this chapter will introduce well-established ML models widely used in perovskite-related studies from both the construction of data and material representation aspects. The approaches of data sets will be discussed including the high-throughput (HT) computations and experimentations. The materialRankle 发表于 2025-3-23 09:32:36
http://reply.papertrans.cn/17/1624/162386/162386_10.png