古文字学 发表于 2025-3-23 10:46:12

Fachgespräche auf der 14. GI-JahrestagungIn this paper we study probabilistic neural networks based on the Parzen kernels. Weak convergence is established assuming time-varying noise. Simulation results are discussed in details.

多嘴多舌 发表于 2025-3-23 15:08:21

http://reply.papertrans.cn/17/1624/162304/162304_12.png

endure 发表于 2025-3-23 19:16:43

http://reply.papertrans.cn/17/1624/162304/162304_13.png

ventilate 发表于 2025-3-24 00:10:33

On the Strong Convergence of the Orthogonal Series-Type Kernel Regression Neural Networks in a Non-sStrong convergence of general regression neural networks is proved assuming non-stationary noise. The network is based on the orthogonal series-type kernel. Simulation results are discussed in details.

Flawless 发表于 2025-3-24 02:54:14

http://reply.papertrans.cn/17/1624/162304/162304_15.png

CHANT 发表于 2025-3-24 09:24:37

http://reply.papertrans.cn/17/1624/162304/162304_16.png

Noisome 发表于 2025-3-24 12:28:37

Weak Convergence of the Parzen-Type Probabilistic Neural Network Handling Time-Varying NoiseIn this paper we study probabilistic neural networks based on the Parzen kernels. Weak convergence is established assuming time-varying noise. Simulation results are discussed in details.

inscribe 发表于 2025-3-24 18:25:48

http://reply.papertrans.cn/17/1624/162304/162304_18.png

减至最低 发表于 2025-3-24 22:51:05

http://reply.papertrans.cn/17/1624/162304/162304_19.png

anniversary 发表于 2025-3-25 01:56:54

http://reply.papertrans.cn/17/1624/162304/162304_20.png
页: 1 [2] 3 4 5 6 7
查看完整版本: Titlebook: Artificial Intelligence and Soft Computing; 11th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings