eternal 发表于 2025-3-21 19:50:51
书目名称Artificial Intelligence Techniques for a Scalable Energy Transition影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0162149<br><br> <br><br>书目名称Artificial Intelligence Techniques for a Scalable Energy Transition影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0162149<br><br> <br><br>书目名称Artificial Intelligence Techniques for a Scalable Energy Transition网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0162149<br><br> <br><br>书目名称Artificial Intelligence Techniques for a Scalable Energy Transition网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0162149<br><br> <br><br>书目名称Artificial Intelligence Techniques for a Scalable Energy Transition被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0162149<br><br> <br><br>书目名称Artificial Intelligence Techniques for a Scalable Energy Transition被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0162149<br><br> <br><br>书目名称Artificial Intelligence Techniques for a Scalable Energy Transition年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0162149<br><br> <br><br>书目名称Artificial Intelligence Techniques for a Scalable Energy Transition年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0162149<br><br> <br><br>书目名称Artificial Intelligence Techniques for a Scalable Energy Transition读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0162149<br><br> <br><br>书目名称Artificial Intelligence Techniques for a Scalable Energy Transition读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0162149<br><br> <br><br>商业上 发表于 2025-3-21 23:57:55
http://reply.papertrans.cn/17/1622/162149/162149_2.png委屈 发表于 2025-3-22 01:18:06
Large-Scale Building Thermal Modeling Based on Artificial Neural Networks: Application to Smart Ener model developed and we also realize different factors analysis which may affect the energy consumption for optimization purposes. This leads in setting well the human interface to be sure that each user sticks to each advice in order to guarantee an efficient smart building energy management system谷物 发表于 2025-3-22 06:08:53
Automated Demand Side Management in Buildingse latest advances in artificial intelligence, offer a potential solution to this problem. However, these solutions are marred by data and computational requirements, as well as privacy concerns. Transfer learning has recently been shown to help avoid the requirement of copious amounts of data requir过时 发表于 2025-3-22 12:25:31
http://reply.papertrans.cn/17/1622/162149/162149_5.pngAromatic 发表于 2025-3-22 15:46:16
http://reply.papertrans.cn/17/1622/162149/162149_6.png无礼回复 发表于 2025-3-22 17:54:49
http://reply.papertrans.cn/17/1622/162149/162149_7.png动机 发表于 2025-3-22 23:48:33
Using Model-Based Reasoning for Self-Adaptive Control of Smart Battery Systemsphysical model for fault detection and a logical model for computing the root cause of the observed failure. The intention behind the chapter is to provide all necessary details of the methods allowing to adapt the methods to implement similar smart adaptive systems.秘传 发表于 2025-3-23 04:01:34
Data-Driven Predictive Flexibility Modeling of Distributed Energy Resourcestly unknown and uncertain, and (3) lack of available behind-the-meter sensing and measurements (partly due privacy concerns). As such, data-driven deep learning based frameworks have been proposed in this work to identify aggregated predictive flexibility models of a collection of DERs, using front-VOK 发表于 2025-3-23 05:42:07
http://reply.papertrans.cn/17/1622/162149/162149_10.png