heterodox 发表于 2025-3-30 08:26:08
http://reply.papertrans.cn/17/1622/162138/162138_51.pngNAV 发表于 2025-3-30 14:47:55
http://reply.papertrans.cn/17/1622/162138/162138_52.png轻率的你 发表于 2025-3-30 18:14:47
http://reply.papertrans.cn/17/1622/162138/162138_53.png周年纪念日 发表于 2025-3-30 23:25:29
http://reply.papertrans.cn/17/1622/162138/162138_54.pngExpressly 发表于 2025-3-31 03:49:21
http://reply.papertrans.cn/17/1622/162138/162138_55.png柏树 发表于 2025-3-31 05:18:06
http://reply.papertrans.cn/17/1622/162138/162138_56.pngReclaim 发表于 2025-3-31 10:28:18
http://reply.papertrans.cn/17/1622/162138/162138_57.pngGenome 发表于 2025-3-31 14:00:18
FedCMK: An Efficient Privacy-Preserving Federated Learning Framework,arning updates the global model by updating the gradient, an attacker may still infer the model update through backward inference, which may lead to privacy leakage problems. In order to enhance the security of federated learning, we propose a solution to this challenge by presenting a multi-key Checircumvent 发表于 2025-3-31 17:52:54
,An Embedded Cost Learning Framework Based on Cumulative Gradient Rewards,orks. The GAN has the potential to effectively generate artificial samples that closely resemble the actual sample distribution. The field of steganography utilizing the Generative Adversarial Network (GAN) structure has witnessed a wealth of research with highly successful outcomes. This paper prop羊栏 发表于 2025-4-1 01:04:28
https://doi.org/10.1007/978-981-99-9785-5Machine learning; Adversarial machine learning; Malware detection and analysis; Privacy-preserving data