heterodox 发表于 2025-3-30 08:26:08

http://reply.papertrans.cn/17/1622/162138/162138_51.png

NAV 发表于 2025-3-30 14:47:55

http://reply.papertrans.cn/17/1622/162138/162138_52.png

轻率的你 发表于 2025-3-30 18:14:47

http://reply.papertrans.cn/17/1622/162138/162138_53.png

周年纪念日 发表于 2025-3-30 23:25:29

http://reply.papertrans.cn/17/1622/162138/162138_54.png

Expressly 发表于 2025-3-31 03:49:21

http://reply.papertrans.cn/17/1622/162138/162138_55.png

柏树 发表于 2025-3-31 05:18:06

http://reply.papertrans.cn/17/1622/162138/162138_56.png

Reclaim 发表于 2025-3-31 10:28:18

http://reply.papertrans.cn/17/1622/162138/162138_57.png

Genome 发表于 2025-3-31 14:00:18

FedCMK: An Efficient Privacy-Preserving Federated Learning Framework,arning updates the global model by updating the gradient, an attacker may still infer the model update through backward inference, which may lead to privacy leakage problems. In order to enhance the security of federated learning, we propose a solution to this challenge by presenting a multi-key Che

circumvent 发表于 2025-3-31 17:52:54

,An Embedded Cost Learning Framework Based on Cumulative Gradient Rewards,orks. The GAN has the potential to effectively generate artificial samples that closely resemble the actual sample distribution. The field of steganography utilizing the Generative Adversarial Network (GAN) structure has witnessed a wealth of research with highly successful outcomes. This paper prop

羊栏 发表于 2025-4-1 01:04:28

https://doi.org/10.1007/978-981-99-9785-5Machine learning; Adversarial machine learning; Malware detection and analysis; Privacy-preserving data
页: 1 2 3 4 5 [6] 7
查看完整版本: Titlebook: Artificial Intelligence Security and Privacy; First International Jaideep Vaidya,Moncef Gabbouj,Jin Li Conference proceedings 2024 The Edi