ARGOT 发表于 2025-3-21 17:57:20

书目名称Artificial Intelligence Oceanography影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0162131<br><br>        <br><br>书目名称Artificial Intelligence Oceanography影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0162131<br><br>        <br><br>书目名称Artificial Intelligence Oceanography网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0162131<br><br>        <br><br>书目名称Artificial Intelligence Oceanography网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0162131<br><br>        <br><br>书目名称Artificial Intelligence Oceanography被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0162131<br><br>        <br><br>书目名称Artificial Intelligence Oceanography被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0162131<br><br>        <br><br>书目名称Artificial Intelligence Oceanography年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0162131<br><br>        <br><br>书目名称Artificial Intelligence Oceanography年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0162131<br><br>        <br><br>书目名称Artificial Intelligence Oceanography读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0162131<br><br>        <br><br>书目名称Artificial Intelligence Oceanography读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0162131<br><br>        <br><br>

邪恶的你 发表于 2025-3-21 23:56:49

Forecasting Tropical Instability Waves Based on Artificial Intelligence,esearch fields inspire us to develop a deep neural network-based DL ocean forecasting model that is driven only by the time series of gridded sea surface temperature (SST) data. The model forecasted the SST pattern variations in the eastern equatorial Pacific Ocean, where a well-known prevailing oce

神圣将军 发表于 2025-3-22 03:25:16

http://reply.papertrans.cn/17/1622/162131/162131_3.png

单纯 发表于 2025-3-22 04:48:02

,Satellite Data-Driven Internal Solitary Wave Forecast Based on Machine Learning Techniques,emand yet with little progress in recent years. Numerical simulations and empirical methods are mainly used to forecast the propagation of ISWs but suffer from different issues, such as computational cost, time inefficiency, or low accuracy. Accumulating satellite imagery has provided a solid and fu

narcissism 发表于 2025-3-22 12:20:38

http://reply.papertrans.cn/17/1622/162131/162131_5.png

温和女孩 发表于 2025-3-22 16:20:32

http://reply.papertrans.cn/17/1622/162131/162131_6.png

Bombast 发表于 2025-3-22 18:41:04

,Detecting Tropical Cyclogenesis Using Broad Learning System from Satellite Passive Microwave Observe radiometer’s brightness temperature (TB) data, a tropical cyclogenesis prediction model is trained with the broad learning system (BLS). In contrast to the high computational demand of deep networks, BLS is a flatted one with fast training speed. Meanwhile, the incremental learning ability of BLS

玉米棒子 发表于 2025-3-23 00:46:14

Tropical Cyclone Monitoring Based on Geostationary Satellite Imagery,s and property. Forecasters and emergency responders both rely on accurate TC location and intensity estimates. In this chapter, two deep convolutional neural networks (CNNs) were designed for locating TC centers (CNN-L) and estimating their intensities (CNN-I) from the brightness temperature data o

AGATE 发表于 2025-3-23 02:55:17

http://reply.papertrans.cn/17/1622/162131/162131_9.png

largesse 发表于 2025-3-23 06:52:49

Detection and Analysis of Mesoscale Eddies Based on Deep Learning,ddies have signals on sea surface height (SSH) images, sea surface temperature (SST) images. Previous studies developed automatic eddy identification methods based on SSH or SST. However, single remote sensing data cannot adequately characterize mesoscale eddies. To improve the accuracy and efficien
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Artificial Intelligence Oceanography; Xiaofeng Li,Fan Wang Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023 Open Acc