BREED 发表于 2025-3-21 18:39:16
书目名称Arithmetical Aspects of the Large Sieve Inequality影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0161626<br><br> <br><br>书目名称Arithmetical Aspects of the Large Sieve Inequality影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0161626<br><br> <br><br>书目名称Arithmetical Aspects of the Large Sieve Inequality网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0161626<br><br> <br><br>书目名称Arithmetical Aspects of the Large Sieve Inequality网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0161626<br><br> <br><br>书目名称Arithmetical Aspects of the Large Sieve Inequality被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0161626<br><br> <br><br>书目名称Arithmetical Aspects of the Large Sieve Inequality被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0161626<br><br> <br><br>书目名称Arithmetical Aspects of the Large Sieve Inequality年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0161626<br><br> <br><br>书目名称Arithmetical Aspects of the Large Sieve Inequality年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0161626<br><br> <br><br>书目名称Arithmetical Aspects of the Large Sieve Inequality读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0161626<br><br> <br><br>书目名称Arithmetical Aspects of the Large Sieve Inequality读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0161626<br><br> <br><br>Arbitrary 发表于 2025-3-21 22:15:55
http://reply.papertrans.cn/17/1617/161626/161626_2.pngNATTY 发表于 2025-3-22 03:18:41
http://reply.papertrans.cn/17/1617/161626/161626_3.png亚麻制品 发表于 2025-3-22 04:55:01
http://reply.papertrans.cn/17/1617/161626/161626_4.pngPanther 发表于 2025-3-22 11:45:22
http://reply.papertrans.cn/17/1617/161626/161626_5.png舔食 发表于 2025-3-22 15:53:43
http://reply.papertrans.cn/17/1617/161626/161626_6.png典型 发表于 2025-3-22 19:25:34
http://reply.papertrans.cn/17/1617/161626/161626_7.png赌博 发表于 2025-3-22 21:14:57
Small gaps between primes,sis of the hermitian product stemming from a local system. We show furthermore that the key point of Bombieri & Davenport’s proof concerning small differences between primes is in fact contained in Lemma 1.2 and 1.1.古文字学 发表于 2025-3-23 02:53:24
Approximating by a local model, (.(.)). together with an additional function .∞ (which will take care of the size constraints), for which we assume the following bound:. for some parameters ., ., . and (.).. The Bombieri-Vinogradov Theorem falls within this framework with .∞ being the characteristic function of real numbers ≤ . aAmbiguous 发表于 2025-3-23 07:55:36
Book 2009nes, some of them being new, like a sharp upper bound for the number of twin primes $p$ that are such that $p+1$ is squarefree. In the end the problem of equality in the large sieve inequality is considered and several results in this area are also proved.