GUST 发表于 2025-3-21 19:55:56
书目名称Arithmetic of Quadratic Forms影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0161622<br><br> <br><br>书目名称Arithmetic of Quadratic Forms影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0161622<br><br> <br><br>书目名称Arithmetic of Quadratic Forms网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0161622<br><br> <br><br>书目名称Arithmetic of Quadratic Forms网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0161622<br><br> <br><br>书目名称Arithmetic of Quadratic Forms被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0161622<br><br> <br><br>书目名称Arithmetic of Quadratic Forms被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0161622<br><br> <br><br>书目名称Arithmetic of Quadratic Forms年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0161622<br><br> <br><br>书目名称Arithmetic of Quadratic Forms年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0161622<br><br> <br><br>书目名称Arithmetic of Quadratic Forms读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0161622<br><br> <br><br>书目名称Arithmetic of Quadratic Forms读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0161622<br><br> <br><br>Osteoporosis 发表于 2025-3-21 22:42:25
http://reply.papertrans.cn/17/1617/161622/161622_2.pngBIBLE 发表于 2025-3-22 01:29:46
Goro ShimuraDiscusses algebraic number theory and the theory of semisimple algebras.Discusses classification of quadratic forms over the ring of algebraic integers.Discusses local class field theory.Presents a neKEGEL 发表于 2025-3-22 05:26:14
Springer Monographs in Mathematicshttp://image.papertrans.cn/b/image/161622.jpg乐意 发表于 2025-3-22 10:57:00
Algebras Over a Field,ssociative ring . which is also a vector space over . such that . for . and . If . has an identity element, we denote it by . or simply by . Identifying . with . for every . we can view . as a subring of ..vitrectomy 发表于 2025-3-22 16:19:49
http://reply.papertrans.cn/17/1617/161622/161622_6.pngGEN 发表于 2025-3-22 18:04:05
Jeff R. Wright,Lyna L. Wiggins,T. John Kiml . an . over ., or simply an .., if . for every . and . If . has an identity element . then identifying . with . we can view . as a subfield of .. Notice that . and so two laws of multiplication for the elements of . (one in the vector space and the other in the ring) are the same. Every field exte尖酸一点 发表于 2025-3-22 23:28:16
Eric J. Heikkila,Edwin J. Blewettssociative ring . which is also a vector space over . such that . for . and . If . has an identity element, we denote it by . or simply by . Identifying . with . for every . we can view . as a subring of ..Subjugate 发表于 2025-3-23 03:50:59
http://reply.papertrans.cn/17/1617/161622/161622_9.png致命 发表于 2025-3-23 06:22:10
https://doi.org/10.1007/978-3-642-83126-3We take a base field . and consider a finite-dimensional vector space . over . and an .-valued .-bilinear form . We call, as usual, .. if . for every .