讽刺文章 发表于 2025-3-21 17:50:47
书目名称Aristotelian Assertoric Syllogistic影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0161568<br><br> <br><br>书目名称Aristotelian Assertoric Syllogistic影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0161568<br><br> <br><br>书目名称Aristotelian Assertoric Syllogistic网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0161568<br><br> <br><br>书目名称Aristotelian Assertoric Syllogistic网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0161568<br><br> <br><br>书目名称Aristotelian Assertoric Syllogistic被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0161568<br><br> <br><br>书目名称Aristotelian Assertoric Syllogistic被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0161568<br><br> <br><br>书目名称Aristotelian Assertoric Syllogistic年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0161568<br><br> <br><br>书目名称Aristotelian Assertoric Syllogistic年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0161568<br><br> <br><br>书目名称Aristotelian Assertoric Syllogistic读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0161568<br><br> <br><br>书目名称Aristotelian Assertoric Syllogistic读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0161568<br><br> <br><br>invert 发表于 2025-3-21 21:16:13
,Zeitlich veränderliche Felder, models are considered. Soundness, completeness, and compactness are discussed. After deciphering the longstanding enigma of Leibniz characteristic numbers, the chapter is concluded with a logicophilosophical discussion of Leibniz models.OCTO 发表于 2025-3-22 02:40:58
https://doi.org/10.1007/978-3-642-29044-2d on a ternary relation symbol is presented and proved not to be equivalent (in a strong formal sense) to any Boolean combination of elements of .(.). The proof makes use only of methods developed in the previous chapters and well-known results of sentential logic.友好 发表于 2025-3-22 06:15:33
Semantics of AAS, models are considered. Soundness, completeness, and compactness are discussed. After deciphering the longstanding enigma of Leibniz characteristic numbers, the chapter is concluded with a logicophilosophical discussion of Leibniz models.提名 发表于 2025-3-22 11:47:15
Inadequacy: Bounds of AAS,d on a ternary relation symbol is presented and proved not to be equivalent (in a strong formal sense) to any Boolean combination of elements of .(.). The proof makes use only of methods developed in the previous chapters and well-known results of sentential logic.GEN 发表于 2025-3-22 14:07:42
Mohamed A. AmerOffers a multifacted discussion of Aristotelian assertoric syllogistic.Provides new proofs.Presents a new insight into Leibniz characteristic numbersExhilarate 发表于 2025-3-22 17:44:31
SpringerBriefs in Philosophyhttp://image.papertrans.cn/b/image/161568.jpg群居动物 发表于 2025-3-22 21:38:13
http://reply.papertrans.cn/17/1616/161568/161568_8.pngCanary 发表于 2025-3-23 02:40:01
http://reply.papertrans.cn/17/1616/161568/161568_9.pngPreserve 发表于 2025-3-23 07:15:00
http://reply.papertrans.cn/17/1616/161568/161568_10.png