作呕 发表于 2025-3-25 05:47:53

Approximating the Best-Fit Tree Under , , Normsting..We also consider the problem of finding an ultrametric . that minimizes ..elative: the sum of the factors by which each input distance is stretched. For the latter problem, we give a factor .(log..) approximation.

Enervate 发表于 2025-3-25 08:49:25

http://reply.papertrans.cn/17/1605/160456/160456_22.png

谈判 发表于 2025-3-25 14:53:29

http://reply.papertrans.cn/17/1605/160456/160456_23.png

FRET 发表于 2025-3-25 18:04:32

http://reply.papertrans.cn/17/1605/160456/160456_24.png

Flawless 发表于 2025-3-25 23:56:20

http://reply.papertrans.cn/17/1605/160456/160456_25.png

星球的光亮度 发表于 2025-3-26 00:54:45

978-3-540-28239-6Springer-Verlag Berlin Heidelberg 2005

SMART 发表于 2025-3-26 06:13:52

http://reply.papertrans.cn/17/1605/160456/160456_27.png

起皱纹 发表于 2025-3-26 10:04:48

http://reply.papertrans.cn/17/1605/160456/160456_28.png

极端的正确性 发表于 2025-3-26 12:37:40

http://reply.papertrans.cn/17/1605/160456/160456_29.png

摘要 发表于 2025-3-26 17:43:47

F. Kraus,O. Minkowski,A. Schittenhelm solving a standard SDP relaxation of MAX CUT and then rounds the optimal solution obtained using a random hyperplane. In some cases, the optimal solution of the SDP relaxation happens to lie in a low dimensional space. Can an improved performance ratio be obtained for such instances? We show that t
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques; 8th International Wo Chandra Chekuri,Klaus Jansen,L