QUAIL 发表于 2025-3-25 06:26:21

http://reply.papertrans.cn/17/1605/160443/160443_21.png

heckle 发表于 2025-3-25 09:19:23

Error Analysis: Geometric Approaches,are discussed. It defines different types of geometric errors using those properties for evaluating the proximity of distance functions to Euclidean metrics. Finally, it presents a hybrid approach of computing analytical error from geometric measurements on hyperspheres.

都相信我的话 发表于 2025-3-25 13:30:15

Jayanta MukhopadhyayCovers the topic of digital distances and their Euclidean approximation comprehensively.Includes recent results and advancement in the theory of digital distances.Summarizes properties of different cl

极微小 发表于 2025-3-25 17:19:00

http://reply.papertrans.cn/17/1605/160443/160443_24.png

Suppository 发表于 2025-3-25 23:02:55

http://reply.papertrans.cn/17/1605/160443/160443_25.png

scotoma 发表于 2025-3-26 02:12:28

http://reply.papertrans.cn/17/1605/160443/160443_26.png

dysphagia 发表于 2025-3-26 04:34:40

Approximation of Euclidean Metric by Digital Distances

在前面 发表于 2025-3-26 10:32:59

Approximation of Euclidean Metric by Digital Distances978-981-15-9901-9

Microaneurysm 发表于 2025-3-26 14:57:52

http://reply.papertrans.cn/17/1605/160443/160443_29.png

Override 发表于 2025-3-26 19:30:22

http://reply.papertrans.cn/17/1605/160443/160443_30.png
页: 1 2 [3] 4
查看完整版本: Titlebook: Approximation of Euclidean Metric by Digital Distances; Jayanta Mukhopadhyay Book 2020 The Author(s), under exclusive license to Springer