可入到 发表于 2025-3-21 18:30:02
书目名称Approximation of Additive Convolution-Like Operators影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0160442<br><br> <br><br>书目名称Approximation of Additive Convolution-Like Operators影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0160442<br><br> <br><br>书目名称Approximation of Additive Convolution-Like Operators网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0160442<br><br> <br><br>书目名称Approximation of Additive Convolution-Like Operators网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0160442<br><br> <br><br>书目名称Approximation of Additive Convolution-Like Operators被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0160442<br><br> <br><br>书目名称Approximation of Additive Convolution-Like Operators被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0160442<br><br> <br><br>书目名称Approximation of Additive Convolution-Like Operators年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0160442<br><br> <br><br>书目名称Approximation of Additive Convolution-Like Operators年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0160442<br><br> <br><br>书目名称Approximation of Additive Convolution-Like Operators读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0160442<br><br> <br><br>书目名称Approximation of Additive Convolution-Like Operators读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0160442<br><br> <br><br>好忠告人 发表于 2025-3-21 23:38:46
P. Frick,G.-A. Harnack,A. Praderators studied act in a pair of spaces, so the corresponding operator spaces do not have any multiplication operation which makes the use of algebraic techniques more difficult. However, by introducing appropriate para-algebras, one can obtain necessary and sufficient stability conditions for the appCAPE 发表于 2025-3-22 02:48:33
H. Stolley,M. Kersting,W. Droeseen functions, and Γ is either a simple open or closed piecewise smooth curve in the complex plane ℂ. A case of particular interest is the double layer potential equation . where . refers to the inner normal to Γ at ., and . stands for a compact operator.MILL 发表于 2025-3-22 06:49:31
P. Frick,G.-A. Harnack,A. Praderticity, radar imaging, and theory of slow viscous flows can be reduced to the biharmonic problem . where Δ is the Laplace operator (3.48). We assume that the function . is from the space . (.) ∪ . (.). The notation . (.) is used for the Sobolev space of .-times differentiable functions on ., the derMerited 发表于 2025-3-22 10:25:27
http://reply.papertrans.cn/17/1605/160442/160442_5.pngexhilaration 发表于 2025-3-22 14:30:32
http://reply.papertrans.cn/17/1605/160442/160442_6.png雕镂 发表于 2025-3-22 20:35:51
http://reply.papertrans.cn/17/1605/160442/160442_7.pngentitle 发表于 2025-3-23 01:17:58
http://reply.papertrans.cn/17/1605/160442/160442_8.png瘙痒 发表于 2025-3-23 05:17:51
http://reply.papertrans.cn/17/1605/160442/160442_9.pngDorsal 发表于 2025-3-23 07:59:46
http://reply.papertrans.cn/17/1605/160442/160442_10.png