赏心悦目
发表于 2025-3-26 21:24:40
Approximation Theory and Harmonic Analysis on Spheres and Balls978-1-4614-6660-4Series ISSN 1439-7382 Series E-ISSN 2196-9922
annexation
发表于 2025-3-27 02:51:56
O. Lubarsch,R. Ostertag,F. Roulet, in terms of the smoothness of the function. In this chapter, we study the characterization of the best approximation by polynomials on the sphere. In the classical setting of one variable, the smoothness of a function on . is described by the modulus of smoothness, defined via the forward difference of the function.
Perennial长期的
发表于 2025-3-27 08:46:37
http://reply.papertrans.cn/17/1605/160402/160402_33.png
Pepsin
发表于 2025-3-27 09:41:34
https://doi.org/10.1007/978-3-642-86623-4mated,similar to what we did on the unit sphere in Chap. 4. There is, however, an essential difference between approximations on the unit ball and those on the unit sphere, which arises from the simple fact that the ball is a domain with boundary, whereas the sphere has no boundary.
Dealing
发表于 2025-3-27 13:58:13
http://reply.papertrans.cn/17/1605/160402/160402_35.png
骨
发表于 2025-3-27 19:07:50
http://reply.papertrans.cn/17/1605/160402/160402_36.png
推迟
发表于 2025-3-27 22:17:28
http://reply.papertrans.cn/17/1605/160402/160402_37.png
极少
发表于 2025-3-28 03:06:18
http://reply.papertrans.cn/17/1605/160402/160402_38.png
分开
发表于 2025-3-28 10:05:37
http://reply.papertrans.cn/17/1605/160402/160402_39.png
小溪
发表于 2025-3-28 11:04:41
http://reply.papertrans.cn/17/1605/160402/160402_40.png