赏心悦目 发表于 2025-3-26 21:24:40

Approximation Theory and Harmonic Analysis on Spheres and Balls978-1-4614-6660-4Series ISSN 1439-7382 Series E-ISSN 2196-9922

annexation 发表于 2025-3-27 02:51:56

O. Lubarsch,R. Ostertag,F. Roulet, in terms of the smoothness of the function. In this chapter, we study the characterization of the best approximation by polynomials on the sphere. In the classical setting of one variable, the smoothness of a function on . is described by the modulus of smoothness, defined via the forward difference of the function.

Perennial长期的 发表于 2025-3-27 08:46:37

http://reply.papertrans.cn/17/1605/160402/160402_33.png

Pepsin 发表于 2025-3-27 09:41:34

https://doi.org/10.1007/978-3-642-86623-4mated,similar to what we did on the unit sphere in Chap. 4. There is, however, an essential difference between approximations on the unit ball and those on the unit sphere, which arises from the simple fact that the ball is a domain with boundary, whereas the sphere has no boundary.

Dealing 发表于 2025-3-27 13:58:13

http://reply.papertrans.cn/17/1605/160402/160402_35.png

发表于 2025-3-27 19:07:50

http://reply.papertrans.cn/17/1605/160402/160402_36.png

推迟 发表于 2025-3-27 22:17:28

http://reply.papertrans.cn/17/1605/160402/160402_37.png

极少 发表于 2025-3-28 03:06:18

http://reply.papertrans.cn/17/1605/160402/160402_38.png

分开 发表于 2025-3-28 10:05:37

http://reply.papertrans.cn/17/1605/160402/160402_39.png

小溪 发表于 2025-3-28 11:04:41

http://reply.papertrans.cn/17/1605/160402/160402_40.png
页: 1 2 3 [4] 5 6
查看完整版本: Titlebook: Approximation Theory and Harmonic Analysis on Spheres and Balls; Feng Dai,Yuan Xu Book 2013 Springer Science+Business Media New York 2013