寓言
发表于 2025-3-21 18:31:42
书目名称Approximation Algorithms影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0160381<br><br> <br><br>书目名称Approximation Algorithms影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0160381<br><br> <br><br>书目名称Approximation Algorithms网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0160381<br><br> <br><br>书目名称Approximation Algorithms网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0160381<br><br> <br><br>书目名称Approximation Algorithms被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0160381<br><br> <br><br>书目名称Approximation Algorithms被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0160381<br><br> <br><br>书目名称Approximation Algorithms年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0160381<br><br> <br><br>书目名称Approximation Algorithms年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0160381<br><br> <br><br>书目名称Approximation Algorithms读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0160381<br><br> <br><br>书目名称Approximation Algorithms读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0160381<br><br> <br><br>
Anhydrous
发表于 2025-3-21 23:19:48
http://reply.papertrans.cn/17/1604/160381/160381_2.png
消毒
发表于 2025-3-22 01:19:11
http://reply.papertrans.cn/17/1604/160381/160381_3.png
ascetic
发表于 2025-3-22 05:58:37
s of the scientific community by showing simple ways of exprAlthough this may seem a paradox, all exact science is dominated by the idea of approximation. Bertrand Russell (1872-1970) Most natural optimization problems, including those arising in important application areas, are NP-hard. Therefore,
压碎
发表于 2025-3-22 11:38:27
http://reply.papertrans.cn/17/1604/160381/160381_5.png
苦恼
发表于 2025-3-22 15:35:22
http://reply.papertrans.cn/17/1604/160381/160381_6.png
歌剧等
发表于 2025-3-22 18:14:20
http://reply.papertrans.cn/17/1604/160381/160381_7.png
BADGE
发表于 2025-3-23 01:16:41
https://doi.org/10.1007/978-3-8350-9498-7on 2.1 we deferred giving the lower bounding method on which this algorithm was based. We will provide the answer below. The power of this approach will become apparent when we show the ease with which it extends to solving several generalizations of the set cover problem (see Section 13.2).
Silent-Ischemia
发表于 2025-3-23 05:23:09
Steiner Tree and TSP case. For TSP, without this restriction, the problem admits no approximation factor, assuming . ≠ .. The algorithms, and their analyses, are similar in spirit, which is the reason for presenting these problems together.
溃烂
发表于 2025-3-23 05:50:26
-Centerr the restriction that the edge costs satisfy the triangle inequality. Without this restriction, the .-center problem cannot be approximated within factor .(.), for any computable function .(.), assuming . ≠ . (see Exercise 5.1).