Affordable 发表于 2025-3-21 20:04:53
书目名称Applied Functional Analysis影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0159492<br><br> <br><br>书目名称Applied Functional Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0159492<br><br> <br><br>书目名称Applied Functional Analysis网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0159492<br><br> <br><br>书目名称Applied Functional Analysis网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0159492<br><br> <br><br>书目名称Applied Functional Analysis被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0159492<br><br> <br><br>书目名称Applied Functional Analysis被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0159492<br><br> <br><br>书目名称Applied Functional Analysis年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0159492<br><br> <br><br>书目名称Applied Functional Analysis年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0159492<br><br> <br><br>书目名称Applied Functional Analysis读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0159492<br><br> <br><br>书目名称Applied Functional Analysis读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0159492<br><br> <br><br>guardianship 发表于 2025-3-21 21:47:11
https://doi.org/10.1007/978-1-4612-5865-0Analysis; Hilbert space; Hilbertscher Raum; Optimierung; calculus; functional analysis从属 发表于 2025-3-22 00:38:16
978-1-4612-5867-4Springer-Verlag New York Inc. 1981颂扬国家 发表于 2025-3-22 07:41:53
http://reply.papertrans.cn/16/1595/159492/159492_4.png哺乳动物 发表于 2025-3-22 12:08:38
Dianjun Sun,Shuqiu Sun,Hongqi Feng,Jie Hout is fairly complete in itself, this chapter is necessarily brief in many areas and the reader would find it helpful to have had an elementary introduction to linear spaces, and Hilbert spaces in particular, such as one finds in the standard texts on real analysis.Phagocytes 发表于 2025-3-22 12:56:00
http://reply.papertrans.cn/16/1595/159492/159492_6.pnghandle 发表于 2025-3-22 20:24:10
http://reply.papertrans.cn/16/1595/159492/159492_7.png不溶解 发表于 2025-3-23 01:01:18
http://reply.papertrans.cn/16/1595/159492/159492_8.pngcollateral 发表于 2025-3-23 04:10:31
Convex Sets and Convex Programming,iational problems for convex functions over convex sets, central to which are the Kuhn-Tucker theorem and the minimax theorem of von Neumann, which in turn are based on the “separation” theorems for convex sets. A related result is the Farkas lemma in finite dimensions which finds application in network flow problems.Diluge 发表于 2025-3-23 06:13:07
Functions, Transformations, Operators,pics included, as for example the theory of Hilbert-Schmidt and Nuclear and Volterra operators, whereas the spectral representation theory of self adjoint operators has been limited to compact operators. Examples illustrating the theory are included as often as possible.