Immobilize
发表于 2025-3-23 11:40:07
http://reply.papertrans.cn/16/1595/159482/159482_11.png
斜
发表于 2025-3-23 14:21:00
http://reply.papertrans.cn/16/1595/159482/159482_12.png
CHIDE
发表于 2025-3-23 20:05:54
http://reply.papertrans.cn/16/1595/159482/159482_13.png
GRIPE
发表于 2025-3-24 01:46:47
http://reply.papertrans.cn/16/1595/159482/159482_14.png
波动
发表于 2025-3-24 06:03:47
Textbook 19861st editionons. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory
丰富
发表于 2025-3-24 06:35:51
http://reply.papertrans.cn/16/1595/159482/159482_16.png
善变
发表于 2025-3-24 14:18:18
Th. Liebisch,A. Schönflies,O. Mügge. This basic principle constitutes the first fundamental result in the study of classical or quantum-mechanical systems with prescribed groups of symmetries. Moreover, Noether’s method is the only really systematic procedure for constructing conservation laws for complicated systems of partial differential equations.
AWL
发表于 2025-3-24 15:14:14
Introduction to Lie Groups,he algebraic methods of group theory and the multi-variable calculus used in analytic geometry. This resulting theory, particularly the powerful infinitesimal techniques, can then be applied to a wide range of physical and mathematical problems.
勤劳
发表于 2025-3-24 20:32:27
Symmetry Groups and Conservation Laws,. This basic principle constitutes the first fundamental result in the study of classical or quantum-mechanical systems with prescribed groups of symmetries. Moreover, Noether’s method is the only really systematic procedure for constructing conservation laws for complicated systems of partial differential equations.
Cupidity
发表于 2025-3-25 02:26:05
Th. Liebisch,A. Schönflies,O. Müggeit appears that the possession of an infinite number of such symmetries is a characterizing property of “solvable” equations, such as the Korteweg-de Vries equation, which have “soliton” solutions or can be linearized either directly or via inverse scattering.