whiplash 发表于 2025-3-21 19:07:56
书目名称Applications of Affine and Weyl Geometry影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0159280<br><br> <br><br>书目名称Applications of Affine and Weyl Geometry影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0159280<br><br> <br><br>书目名称Applications of Affine and Weyl Geometry网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0159280<br><br> <br><br>书目名称Applications of Affine and Weyl Geometry网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0159280<br><br> <br><br>书目名称Applications of Affine and Weyl Geometry被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0159280<br><br> <br><br>书目名称Applications of Affine and Weyl Geometry被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0159280<br><br> <br><br>书目名称Applications of Affine and Weyl Geometry年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0159280<br><br> <br><br>书目名称Applications of Affine and Weyl Geometry年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0159280<br><br> <br><br>书目名称Applications of Affine and Weyl Geometry读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0159280<br><br> <br><br>书目名称Applications of Affine and Weyl Geometry读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0159280<br><br> <br><br>小平面 发表于 2025-3-21 20:58:07
Eduardo García-Río,Peter Gilkey,Ramón Vázquez-Lore值得尊敬 发表于 2025-3-22 00:47:52
1938-1743 geometry plays an important role throughout the book and consequently is treated carefully in various chapters, as is the representation theory underlying vario978-3-031-01277-8978-3-031-02405-4Series ISSN 1938-1743 Series E-ISSN 1938-1751推延 发表于 2025-3-22 08:22:31
Book 2013results and definitions we shall need---proofs are included of many of these results to make it as self-contained as possible. Para-complex geometry plays an important role throughout the book and consequently is treated carefully in various chapters, as is the representation theory underlying varioCommunal 发表于 2025-3-22 10:32:10
Pavel S. Knopov,Evgeniya J. Kasitskayaes us to treat both contexts in a parallel notation. Section 1.5 deals with curvature decompositions and basic representation theory. The Singer-Thorpe , Higa , and Tricerri-Vanhecke decompositions are given for the curvature tensor in the Riemannian, the Weyl, and the Hermitian表状态 发表于 2025-3-22 15:51:47
https://doi.org/10.1007/978-94-009-8156-0fold admits a unique (para)-Kähler-Weyl structure, these structures can be non-trivial. We shall always work in both the complex and the para-complex settings and shall, for the most part, attempt to treat these two cases in parallel.伪书 发表于 2025-3-22 19:21:44
http://reply.papertrans.cn/16/1593/159280/159280_7.pngColonoscopy 发表于 2025-3-22 22:59:50
http://reply.papertrans.cn/16/1593/159280/159280_8.png富足女人 发表于 2025-3-23 02:40:33
http://reply.papertrans.cn/16/1593/159280/159280_9.pngNOMAD 发表于 2025-3-23 06:39:41
Book 2013 the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian stru