capsaicin 发表于 2025-3-23 10:14:27

https://doi.org/10.1007/978-3-642-19248-7In this chapter we show how the presence of an antiplane of elastic symmetry (6.5) permits the reduction of antiplane problems concerning anisotropic material to corresponding problems concerning isotropic material.

Schlemms-Canal 发表于 2025-3-23 17:32:21

Springer Tracts in Modern PhysicsIn this chapter we consider some aspects of linear anisotropy of general form and cylindrical anisotropy.

Allergic 发表于 2025-3-23 19:00:39

The law of elasticity,In this introduction we shall be concerned with a simple approach to tensor algebra, and the tensor formulation of stress, deformation and energy, leading to .’s law, the properties of anisotropy, and considerations of elastic symmetry.

路标 发表于 2025-3-23 22:25:37

Stress functions and complex stresses,Consider a cylindrical or prismatic rod of any form of cross-section bounded by plane ends perpendicular to the generators.

讥笑 发表于 2025-3-24 04:48:58

Isotropic beams,In this chapter we consider the general antiplane problem for isotropic (prismatic or cylindrical) beams and investigate in particular the cases of extension, bending by couples and push.

壮观的游行 发表于 2025-3-24 09:22:30

http://reply.papertrans.cn/16/1587/158647/158647_16.png

冥界三河 发表于 2025-3-24 12:31:54

Antiplane of elastic symmetry,In this chapter we show how the presence of an antiplane of elastic symmetry (6.5) permits the reduction of antiplane problems concerning anisotropic material to corresponding problems concerning isotropic material.

吸引人的花招 发表于 2025-3-24 15:17:30

General linear and cylindrical anisotropy,In this chapter we consider some aspects of linear anisotropy of general form and cylindrical anisotropy.

majestic 发表于 2025-3-24 20:29:15

http://reply.papertrans.cn/16/1587/158647/158647_19.png

完成 发表于 2025-3-25 00:46:16

http://reply.papertrans.cn/16/1587/158647/158647_20.png
页: 1 [2] 3 4
查看完整版本: Titlebook: Antiplane Elastic Systems; L. M. Milne-Thomson Book 1962 Springer-Verlag OHG Berlin · Göttingen · Heidelberg 1962 Finite.Lie.Potential.Pro