积聚 发表于 2025-3-21 16:41:00

书目名称Analytic Continuation and q-Convexity影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0156512<br><br>        <br><br>书目名称Analytic Continuation and q-Convexity影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0156512<br><br>        <br><br>书目名称Analytic Continuation and q-Convexity网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0156512<br><br>        <br><br>书目名称Analytic Continuation and q-Convexity网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0156512<br><br>        <br><br>书目名称Analytic Continuation and q-Convexity被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0156512<br><br>        <br><br>书目名称Analytic Continuation and q-Convexity被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0156512<br><br>        <br><br>书目名称Analytic Continuation and q-Convexity年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0156512<br><br>        <br><br>书目名称Analytic Continuation and q-Convexity年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0156512<br><br>        <br><br>书目名称Analytic Continuation and q-Convexity读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0156512<br><br>        <br><br>书目名称Analytic Continuation and q-Convexity读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0156512<br><br>        <br><br>

厚颜无耻 发表于 2025-3-22 00:02:02

http://reply.papertrans.cn/16/1566/156512/156512_2.png

irreparable 发表于 2025-3-22 02:48:31

Postdisciplinary Studies in Discoursep. . in which we study domains created by . functions. These were introduced by Hunt and Murray in 1978 who defined them in terms of a local maximum property, similar to subharmonicity, but replacing harmonic functions by functions pluriharmonic on (. + 1)-dimensional subspaces.

Misnomer 发表于 2025-3-22 05:30:49

http://reply.papertrans.cn/16/1566/156512/156512_4.png

协迫 发表于 2025-3-22 11:46:56

http://reply.papertrans.cn/16/1566/156512/156512_5.png

我吃花盘旋 发表于 2025-3-22 14:57:55

,-Convexity and ,-Cycle Spaces,i problem to .-convex spaces. A consequence is that the sets of (. − 1)-cycles of .-convex domains with smooth boundary in projective algebraic manifolds, which are equipped with complex structures as open subsets of Chow varieties, are in fact holomorphically convex.

Prologue 发表于 2025-3-22 20:53:23

Book 2022tinuous surfaces whose complements are .q-.pseudoconvex is investigated. As an outcome, the authors generalize results by Hartogs (1909), Shcherbina (1993), and Chirka (2001) on the existence of foliations of pseudoconcave continuous real hypersurfaces by smooth complex ones. ..A similar generalizat

cutlery 发表于 2025-3-22 22:13:06

http://reply.papertrans.cn/16/1566/156512/156512_8.png

有组织 发表于 2025-3-23 05:21:26

Analytic Continuation and q-Convexity978-981-19-1239-9Series ISSN 2191-8198 Series E-ISSN 2191-8201

碎石 发表于 2025-3-23 05:58:27

http://reply.papertrans.cn/16/1566/156512/156512_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Analytic Continuation and q-Convexity; Takeo Ohsawa,Thomas Pawlaschyk Book 2022 The Author(s), under exclusive license to Springer Nature