Mere仅仅 发表于 2025-3-26 22:27:44

http://reply.papertrans.cn/16/1565/156497/156497_31.png

扩张 发表于 2025-3-27 04:05:50

http://reply.papertrans.cn/16/1565/156497/156497_32.png

municipality 发表于 2025-3-27 07:08:25

http://reply.papertrans.cn/16/1565/156497/156497_33.png

外表读作 发表于 2025-3-27 10:32:15

http://reply.papertrans.cn/16/1565/156497/156497_34.png

ARCH 发表于 2025-3-27 14:15:31

http://reply.papertrans.cn/16/1565/156497/156497_35.png

Minutes 发表于 2025-3-27 17:56:26

Surfacing Intuitions Through Visual Novelsined by . with kernel .. We obtain conditions for the existence of a solution . to the inhomogeneous equation .=.+α, which serves as a discrete model for an inhomogeneous, time-independent Schrödinger equation on ℝ.. Define a discrete Carleson norm ., and let .. If ., and ..ω-a.e., then there exists

刺激 发表于 2025-3-27 23:52:31

http://reply.papertrans.cn/16/1565/156497/156497_37.png

歌剧等 发表于 2025-3-28 04:31:14

On the Nature of Disciplinary Intuitions sharp inequality for the gradient of a bounded or semibounded harmonic function in a ball, one arrives at improved estimates (compared with the known ones) for the gradient of harmonic functions in an arbitrary subdomain of ℝ.. A representation of the sharp constant in a pointwise estimate of the g

联想记忆 发表于 2025-3-28 09:32:09

Leslie Haas,Jill T. Tussey,Michelle Metzgerding recent results for operators whose coefficients are continuous with mild conditions on the modulus of continuity: if the square of the modulus of continuity satisfies the Dini condition, then there is an integral invariant which controls the behavior of solutions of .*.=0 and whether there is a

夸张 发表于 2025-3-28 12:59:46

Premkumar Pugalenthi,Michelle Stephanterior ball condition, then the Dirichlet problem ., has a unique solution for any . ∈ (1,∞). This solution satisfies natural nontangential maximal function estimates and can be represented as .. Above, ν denotes the outward unit normal to Ω and .(·,·) stands for the Green function associated with Ω
页: 1 2 3 [4] 5 6 7
查看完整版本: Titlebook: Analysis, Partial Differential Equations and Applications; The Vladimir Maz‘ya Alberto Cialdea,Paolo Emilio Ricci,Flavia Lanzara Conferenc