burgeon 发表于 2025-3-21 16:56:46
书目名称Analysis of the Navier-Stokes Problem影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0156476<br><br> <br><br>书目名称Analysis of the Navier-Stokes Problem影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0156476<br><br> <br><br>书目名称Analysis of the Navier-Stokes Problem网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0156476<br><br> <br><br>书目名称Analysis of the Navier-Stokes Problem网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0156476<br><br> <br><br>书目名称Analysis of the Navier-Stokes Problem被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0156476<br><br> <br><br>书目名称Analysis of the Navier-Stokes Problem被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0156476<br><br> <br><br>书目名称Analysis of the Navier-Stokes Problem年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0156476<br><br> <br><br>书目名称Analysis of the Navier-Stokes Problem年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0156476<br><br> <br><br>书目名称Analysis of the Navier-Stokes Problem读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0156476<br><br> <br><br>书目名称Analysis of the Navier-Stokes Problem读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0156476<br><br> <br><br>SCORE 发表于 2025-3-21 23:13:45
Book 2023Latest editionl positive times. By proving the NSP paradox, this book provides a solution to the millennium problem concerning the Navier-Stokes Equations and shows that they are physically and mathematically contradictive..音乐戏剧 发表于 2025-3-22 03:21:40
1938-1743 oundaries.Proves that the Navier-Stokes equations are physic.This book revises and expands upon the prior edition, The Navier-Stokes Problem. The focus of this book is to provide a mathematical analysis of the Navier-Stokes Problem (NSP) in R^3 without boundaries. Before delving into analysis, the新奇 发表于 2025-3-22 06:41:24
http://reply.papertrans.cn/16/1565/156476/156476_4.png萤火虫 发表于 2025-3-22 09:11:33
Les Gallo-Silver,David Bimbi,Michael Rembis.. Taking the Laplace transform of (.) one gets . where formula (A2.13) was used: . Here . is the gamma function and formula (.) is valid classically for .; this formula is valid for all complex . except ., by analytic continuation with respect to . because . is analytic in . except for the points .Melatonin 发表于 2025-3-22 15:51:31
Analysis of the Navier-Stokes Problem978-3-031-30723-2Series ISSN 1938-1743 Series E-ISSN 1938-1751Capture 发表于 2025-3-22 17:38:22
http://reply.papertrans.cn/16/1565/156476/156476_7.pngtympanometry 发表于 2025-3-23 00:58:27
http://reply.papertrans.cn/16/1565/156476/156476_8.pngNebulizer 发表于 2025-3-23 02:43:27
https://doi.org/10.1057/978-1-137-48769-8The NSP consists of solving the following equations. .where ..藐视 发表于 2025-3-23 06:48:43
Les Gallo-Silver,David Bimbi,Michael RembisOne of the . estimates was formulated and proved in Lemma ., namely, estimate (.): . where .(., .) is a solution to the NSP (.)–(.). It was proved under the assumption . The other basic . estimate is formulated in Theorem .. Let us use this result and the Parseval’s equation to derive the following theorem.