漠不关心
发表于 2025-3-21 17:53:46
书目名称Analysis of Spherical Symmetries in Euclidean Spaces影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0156446<br><br> <br><br>书目名称Analysis of Spherical Symmetries in Euclidean Spaces影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0156446<br><br> <br><br>书目名称Analysis of Spherical Symmetries in Euclidean Spaces网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0156446<br><br> <br><br>书目名称Analysis of Spherical Symmetries in Euclidean Spaces网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0156446<br><br> <br><br>书目名称Analysis of Spherical Symmetries in Euclidean Spaces被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0156446<br><br> <br><br>书目名称Analysis of Spherical Symmetries in Euclidean Spaces被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0156446<br><br> <br><br>书目名称Analysis of Spherical Symmetries in Euclidean Spaces年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0156446<br><br> <br><br>书目名称Analysis of Spherical Symmetries in Euclidean Spaces年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0156446<br><br> <br><br>书目名称Analysis of Spherical Symmetries in Euclidean Spaces读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0156446<br><br> <br><br>书目名称Analysis of Spherical Symmetries in Euclidean Spaces读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0156446<br><br> <br><br>
TAG
发表于 2025-3-21 21:53:09
http://reply.papertrans.cn/16/1565/156446/156446_2.png
性别
发表于 2025-3-22 02:49:49
Analysis of Spherical Symmetries in Euclidean Spaces
减至最低
发表于 2025-3-22 07:34:44
Book 1998y dimensions. Essential parts may even be called elementary because of the chosen techniques. The central topic is the presentation of spherical harmonics in a theory of invariants of the orthogonal group. H. Weyl was one of the first to point out that spherical harmonics must be more than a fortuna
我邪恶
发表于 2025-3-22 10:13:30
http://reply.papertrans.cn/16/1565/156446/156446_5.png
苦笑
发表于 2025-3-22 16:58:06
http://reply.papertrans.cn/16/1565/156446/156446_6.png
痛苦一生
发表于 2025-3-22 19:18:53
http://reply.papertrans.cn/16/1565/156446/156446_7.png
Comprise
发表于 2025-3-23 00:32:33
The Specific Theories,ts. An explicit orthogonal basis of . (q) was found by Laplace for . = 3. His discovery can be easily extended to higher dimensions. We add a description of the isotropically invariant associated spaces.
枫树
发表于 2025-3-23 01:35:49
https://doi.org/10.1007/978-1-4899-1480-4ts. An explicit orthogonal basis of . (q) was found by Laplace for . = 3. His discovery can be easily extended to higher dimensions. We add a description of the isotropically invariant associated spaces.
invert
发表于 2025-3-23 09:14:01
Introduction, spherical symmetry. The classical concepts of the tensor calculus and the formalisms of the theory of differential forms are both used as we go along, the results are stated, but no proofs of general theorems are presented because several good books devoted to the subject are available.