染色体
发表于 2025-3-23 10:54:52
978-1-4471-7259-8Springer-Verlag London 2014
subordinate
发表于 2025-3-23 17:14:28
Jonas Jungmann,Peter Preuss,Reinhold Schunntandard results from the theory of distributions and function spaces, including isotropic and anisotropic Sobolev spaces, Besov spaces, Fourier multipliers and mollifiers in function spaces, and function space interpolation.
BRAVE
发表于 2025-3-23 18:21:07
http://reply.papertrans.cn/16/1564/156365/156365_13.png
prolate
发表于 2025-3-24 01:06:59
http://reply.papertrans.cn/16/1564/156365/156365_14.png
Vasoconstrictor
发表于 2025-3-24 05:37:35
Einleitung: Warten auf den Tod?, A key contribution of the chapter is the derivation of optimal-order bounds on the error between the analytical solution and its finite difference approximation for hyperbolic equations with variable coefficients under minimal regularity hypotheses on the coefficients and the solution, the minimal
overweight
发表于 2025-3-24 07:55:40
http://reply.papertrans.cn/16/1564/156365/156365_16.png
明确
发表于 2025-3-24 11:33:23
Jonas Jungmann,Peter Preuss,Reinhold Schunntandard results from the theory of distributions and function spaces, including isotropic and anisotropic Sobolev spaces, Besov spaces, Fourier multipliers and mollifiers in function spaces, and function space interpolation.
果仁
发表于 2025-3-24 16:48:55
http://reply.papertrans.cn/16/1564/156365/156365_18.png
Militia
发表于 2025-3-24 19:50:00
http://reply.papertrans.cn/16/1564/156365/156365_19.png
拥护
发表于 2025-3-25 01:28:06
0179-3632 gularity conditions i.e. for PDEs with nonsmooth solutions a.This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions..Finite difference methods are a classical