Obloquy
发表于 2025-3-28 15:39:05
http://reply.papertrans.cn/16/1564/156350/156350_41.png
lambaste
发表于 2025-3-28 20:04:32
http://reply.papertrans.cn/16/1564/156350/156350_42.png
Vo2-Max
发表于 2025-3-29 02:09:31
http://reply.papertrans.cn/16/1564/156350/156350_43.png
CHANT
发表于 2025-3-29 05:39:58
http://reply.papertrans.cn/16/1564/156350/156350_44.png
FUSC
发表于 2025-3-29 08:42:04
https://doi.org/10.1007/978-3-662-55890-4hese generators is the system (..;. ∈ .) defined on . as follows: ., where the coefficients .., .., .., .. all are integers which satisfy . (see Vilenkin for more details). When ..≡..≡2 for all ., the system .. is the double Walsh system. When .. = .(1) and .. =.(1), the system .. is called a double Vilenkin system ..
易受骗
发表于 2025-3-29 12:00:56
https://doi.org/10.1007/978-3-658-26893-0 suggested by P. W. Jones for the case p = 2, that it is adapted to the case 1 < p < ∞ using an new version of Cotlar’s Lemma for L.. We then prove some weighted inequalities for simple dyadic operators.
unstable-angina
发表于 2025-3-29 19:34:44
http://reply.papertrans.cn/16/1564/156350/156350_47.png
olfction
发表于 2025-3-29 21:10:41
http://reply.papertrans.cn/16/1564/156350/156350_48.png
Anterior
发表于 2025-3-30 02:03:11
http://reply.papertrans.cn/16/1564/156350/156350_49.png
Flu表流动
发表于 2025-3-30 05:21:23
Haar multipliers, paraproducts, and weighted inequalities suggested by P. W. Jones for the case p = 2, that it is adapted to the case 1 < p < ∞ using an new version of Cotlar’s Lemma for L.. We then prove some weighted inequalities for simple dyadic operators.