hearken 发表于 2025-3-21 17:27:33
书目名称Analysis of Categorical Data from Historical Perspectives影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0156337<br><br> <br><br>书目名称Analysis of Categorical Data from Historical Perspectives影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0156337<br><br> <br><br>书目名称Analysis of Categorical Data from Historical Perspectives网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0156337<br><br> <br><br>书目名称Analysis of Categorical Data from Historical Perspectives网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0156337<br><br> <br><br>书目名称Analysis of Categorical Data from Historical Perspectives被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0156337<br><br> <br><br>书目名称Analysis of Categorical Data from Historical Perspectives被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0156337<br><br> <br><br>书目名称Analysis of Categorical Data from Historical Perspectives年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0156337<br><br> <br><br>书目名称Analysis of Categorical Data from Historical Perspectives年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0156337<br><br> <br><br>书目名称Analysis of Categorical Data from Historical Perspectives读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0156337<br><br> <br><br>书目名称Analysis of Categorical Data from Historical Perspectives读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0156337<br><br> <br><br>CAPE 发表于 2025-3-21 22:17:53
http://reply.papertrans.cn/16/1564/156337/156337_2.png单纯 发表于 2025-3-22 03:55:22
Contrasts for Neyman’s Modified Chi-Square Statistic in One-Way Contingency Tables022), however, argued against its use in multiple comparisons on the ground that in this statistic, hypothesised mean and variance-covariance structures of observed frequencies (proportions) are closely linked, so that rejecting the former necessarily implies rejecting the latter as well. To avoid t暂停,间歇 发表于 2025-3-22 06:48:46
http://reply.papertrans.cn/16/1564/156337/156337_4.pngInvertebrate 发表于 2025-3-22 09:56:37
Confounding, a Nuisance Addressedg. As aggregation, used to isolate an effect of a predictor variable on the dependant variable, leads to confounding if the contingency table is non-orthogonal, the proposed method relies on the loss of information when the correlation between two variables with . and . categories is eliminated by r倔强不能 发表于 2025-3-22 14:43:30
Correcting for Context Effects in Ratings transformation is referred to as . and involves the creation of items corresponding to boundaries between the values of the rating scale. The resulting dual-scaling values for these boundaries can be used to quantify differences in respondents’ scale use. In this chapter, we show how a particular m是贪求 发表于 2025-3-22 21:05:13
http://reply.papertrans.cn/16/1564/156337/156337_7.pngExonerate 发表于 2025-3-22 21:59:16
http://reply.papertrans.cn/16/1564/156337/156337_8.png使尴尬 发表于 2025-3-23 03:11:10
http://reply.papertrans.cn/16/1564/156337/156337_9.png北极人 发表于 2025-3-23 07:42:55
Dual Scaling of Rating Dataowever, the methods differ. To a large extent this is due to differences in pre-processing of the data. In particular, in dual scaling, ratings are either transformed to rank order, or to successive category data before applying a customised dual scaling approach. In correspondence analysis, on the