法令 发表于 2025-3-21 17:04:01
书目名称Analysis of Approximation Methods for Differential and Integral Equations影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0156332<br><br> <br><br>书目名称Analysis of Approximation Methods for Differential and Integral Equations影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0156332<br><br> <br><br>书目名称Analysis of Approximation Methods for Differential and Integral Equations网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0156332<br><br> <br><br>书目名称Analysis of Approximation Methods for Differential and Integral Equations网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0156332<br><br> <br><br>书目名称Analysis of Approximation Methods for Differential and Integral Equations被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0156332<br><br> <br><br>书目名称Analysis of Approximation Methods for Differential and Integral Equations被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0156332<br><br> <br><br>书目名称Analysis of Approximation Methods for Differential and Integral Equations年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0156332<br><br> <br><br>书目名称Analysis of Approximation Methods for Differential and Integral Equations年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0156332<br><br> <br><br>书目名称Analysis of Approximation Methods for Differential and Integral Equations读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0156332<br><br> <br><br>书目名称Analysis of Approximation Methods for Differential and Integral Equations读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0156332<br><br> <br><br>书法 发表于 2025-3-21 23:51:07
Alexander Mertes,Florian Liberatorerry out this analysis for both linear and nonlinear problems. As preparation, we give some general results on the solvability of linear equations of the second kind and apply these to integral equations.一再困扰 发表于 2025-3-22 04:15:58
Max Schröder,Sebastian Bader,Thomas Kirste convergence “discretely uniform convergence”, but we wish to point out that this convergence is nothing other than discrete convergence in the sense of Section 5.1 with respect to a particular norm. In Section 5.4, we explore the concept of discrete convergence further by considering the example of刺激 发表于 2025-3-22 05:31:42
Sabine Hahn,Friederike J. S. Thilo). By virtue of the characterizations of stability to be discussed in Section 6.2, we are able to obtain equivalent conditions for the discrete convergence of differentiable mappings, along with error estimates (cf. Theorem 6.14). The concluding Section 6.4 establishes and characterizes the discrete踉跄 发表于 2025-3-22 12:08:37
Michael Prilla,Heinrich Recken,Marc JanßenGalerkin methods, we aim to produce quasi-optimal error estimates with respect to the approximations in the spatial variable. Attaining such estimates requires extensive investigations for rather simple problems so that we shall necessarily restrict the scope of our analysis of Galerkin methods to a朴素 发表于 2025-3-22 14:04:09
Analysis of Approximation Methods for Differential and Integral Equations鲁莽 发表于 2025-3-22 20:38:20
http://reply.papertrans.cn/16/1564/156332/156332_7.pngauxiliary 发表于 2025-3-22 23:52:38
http://reply.papertrans.cn/16/1564/156332/156332_8.pngHiatal-Hernia 发表于 2025-3-23 05:02:13
Projection Methods for Variational Equationsdering and solving each problem in a finite-dimensional subspace of the respective Hilbert spaces obtained in Section 2.2. This procedure can be viewed as a projection method. Among the many special types of projection methods in this chapter, Ritz-Galerkin methods are used for approximating solutiomaladorit 发表于 2025-3-23 05:48:19
http://reply.papertrans.cn/16/1564/156332/156332_10.png