crease 发表于 2025-3-30 10:25:40
One-dimensional Variational Problems whose Minimizers do not Satisfy the Euler-Lagrange Equation,In this paper we consider the problem of minimizing.in the set.of absolutely continuous function .: [.,.] ➛ ℝ satisfying the end conditions.where α and β are given constant. In (1.1), [.,.]is a finite interval, ′ denotes.and the integrand . = .(., ., .) is assumed to be smooth, nonnegative and to satisfy the .arcane 发表于 2025-3-30 15:40:34
http://reply.papertrans.cn/16/1563/156285/156285_52.pngOffbeat 发表于 2025-3-30 19:07:54
http://reply.papertrans.cn/16/1563/156285/156285_53.png自负的人 发表于 2025-3-30 23:26:06
https://doi.org/10.1007/978-3-642-61598-6Lagrange equation; Potential; continuum mechanics; differential equation; dynamics; elasticity; fluid mech财政 发表于 2025-3-31 03:02:08
978-3-540-18125-5Springer-Verlag Berlin Heidelberg 1987舞蹈编排 发表于 2025-3-31 05:58:59
http://image.papertrans.cn/a/image/156285.jpg熄灭 发表于 2025-3-31 10:08:17
http://reply.papertrans.cn/16/1563/156285/156285_57.png慷慨援助 发表于 2025-3-31 15:20:29
http://reply.papertrans.cn/16/1563/156285/156285_58.png迎合 发表于 2025-3-31 20:59:54
Hyperbolicity and Change of Type in the Flow of Viscoelastic Fluids,arities is discussed and conditions for a change of type are investigated. The vorticity equation for steady flow can change type when a critical condition involving speed and stresses is satisfied. This leads to a partitioning of the field of flow into subcritical and supercritical regions, as in tdecipher 发表于 2025-3-31 23:48:00
http://reply.papertrans.cn/16/1563/156285/156285_60.png