Obsolescent 发表于 2025-3-21 18:38:41
书目名称Analysis and Geometry on Complex Homogeneous Domains影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0156221<br><br> <br><br>书目名称Analysis and Geometry on Complex Homogeneous Domains影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0156221<br><br> <br><br>书目名称Analysis and Geometry on Complex Homogeneous Domains网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0156221<br><br> <br><br>书目名称Analysis and Geometry on Complex Homogeneous Domains网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0156221<br><br> <br><br>书目名称Analysis and Geometry on Complex Homogeneous Domains被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0156221<br><br> <br><br>书目名称Analysis and Geometry on Complex Homogeneous Domains被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0156221<br><br> <br><br>书目名称Analysis and Geometry on Complex Homogeneous Domains年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0156221<br><br> <br><br>书目名称Analysis and Geometry on Complex Homogeneous Domains年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0156221<br><br> <br><br>书目名称Analysis and Geometry on Complex Homogeneous Domains读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0156221<br><br> <br><br>书目名称Analysis and Geometry on Complex Homogeneous Domains读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0156221<br><br> <br><br>愚笨 发表于 2025-3-22 00:01:12
Introductioni) determination of full holomorphic automorphism groups and (iv) the analytic or geometric relationship between the Šilov boundaries and the domains themselves. During the 1960’s-1970s these subjects had been the main goals for research in this field. On the other hand, the following natural questi产生 发表于 2025-3-22 01:20:13
Semisimple Graded Lie Algebras abelian subspace of . and . be a Cartan subalgebra of . containing .. Then we have ., where . and .. Let . and . be the complexifications of . and .. Then . is a Cartan subalgebra of .. Let . be the root system for the pair left .. If we put . then any root is real-valued on the real subspace . of序曲 发表于 2025-3-22 08:29:11
Symmetric R-Spacesoincides with the centralizer .(.)of . in Aut g, and that Lie .. =g..Let . be the open subgroup of Aut g generated by .. and the adjoint group of g: .= ..Adg,Let . = .. exp(g. + ··· + g.), which is a parabolic subgroup of ..陈腐思想 发表于 2025-3-22 11:13:11
Pseudo-Hermitian Symmetric Spaceshe linear isotropy representation of . is irreducible (resp. reducible), then . is called . (resp. .). If . admits a G-invariant complex structure . and a G-invariant pseudo-Hermitian metric (with respect to ., then a . is called .. Simple symmetric spaces were classified infinitesimally by Berger [功多汁水 发表于 2025-3-22 13:56:26
http://reply.papertrans.cn/16/1563/156221/156221_6.pngExhilarate 发表于 2025-3-22 17:03:14
Construction of the Hermitian Symmetric Spacesexists a unique corresponding Riemannian symmetric space, that it is actually Hermitian symmetric, and it can be realized as a bounded domain. Along the way we are also going to do quite a lot more. We shall give a description of the compact Hermitian symmetric space corresponding to the dual oiLa .分发 发表于 2025-3-22 22:57:26
http://reply.papertrans.cn/16/1563/156221/156221_8.pngLedger 发表于 2025-3-23 03:31:33
0743-1643 ect, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classiadmission 发表于 2025-3-23 05:37:04
Constructions for one message block,on arises: What kind of homogeneous domains are there in the complement of a given symmetric domain in .? This question leads us to study semisimple pseudo-Hermitian symmetric spaces. The infinitesimal classification of such symmetric spaces is included in Berger’s work .