Cleveland 发表于 2025-3-21 18:36:34
书目名称Analysis II影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0156133<br><br> <br><br>书目名称Analysis II影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0156133<br><br> <br><br>书目名称Analysis II网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0156133<br><br> <br><br>书目名称Analysis II网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0156133<br><br> <br><br>书目名称Analysis II被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0156133<br><br> <br><br>书目名称Analysis II被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0156133<br><br> <br><br>书目名称Analysis II年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0156133<br><br> <br><br>书目名称Analysis II年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0156133<br><br> <br><br>书目名称Analysis II读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0156133<br><br> <br><br>书目名称Analysis II读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0156133<br><br> <br><br>创造性 发表于 2025-3-21 23:39:11
http://reply.papertrans.cn/16/1562/156133/156133_2.pngMURAL 发表于 2025-3-22 04:04:18
http://reply.papertrans.cn/16/1562/156133/156133_3.pngOverdose 发表于 2025-3-22 07:48:41
Lebesgue integration,hings, piecewise constant functions only attain a finite number of values (as opposed to most functions in real life, which can take an infinite number of values). Once one learns how to integrate piecewise constant functions, one can then integrate other Riemann integrable functions by a similar procedure.PHIL 发表于 2025-3-22 11:43:43
http://reply.papertrans.cn/16/1562/156133/156133_5.pngoutskirts 发表于 2025-3-22 15:49:27
Sumer S. Vaid,Gabriella M. Hararia rich subject, the theory of metric spaces becomes even richer, and of more importance to analysis, when one considers not just a single metric space, but rather . (..) and (..) of metric spaces, as well as . : . between such spaces.华而不实 发表于 2025-3-22 17:41:20
Davide Marengo,Michele Settanniimated by polynomials. Later, we showed how a different class of functions (real analytic functions) could be written exactly (not approximately) as an infinite polynomial, or more precisely a power series.上腭 发表于 2025-3-23 00:44:57
http://reply.papertrans.cn/16/1562/156133/156133_8.pngMyelin 发表于 2025-3-23 03:16:33
Sumer S. Vaid,Gabriella M. Hararia rich subject, the theory of metric spaces becomes even richer, and of more importance to analysis, when one considers not just a single metric space, but rather . (..) and (..) of metric spaces, as well as . : . between such spaces.调整 发表于 2025-3-23 08:50:32
Davide Marengo,Michele Settanniimated by polynomials. Later, we showed how a different class of functions (real analytic functions) could be written exactly (not approximately) as an infinite polynomial, or more precisely a power series.