弄碎 发表于 2025-3-21 16:37:19
书目名称Analysis II影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0156129<br><br> <br><br>书目名称Analysis II影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0156129<br><br> <br><br>书目名称Analysis II网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0156129<br><br> <br><br>书目名称Analysis II网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0156129<br><br> <br><br>书目名称Analysis II被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0156129<br><br> <br><br>书目名称Analysis II被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0156129<br><br> <br><br>书目名称Analysis II年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0156129<br><br> <br><br>书目名称Analysis II年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0156129<br><br> <br><br>书目名称Analysis II读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0156129<br><br> <br><br>书目名称Analysis II读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0156129<br><br> <br><br>过分 发表于 2025-3-22 00:08:38
http://reply.papertrans.cn/16/1562/156129/156129_2.png支形吊灯 发表于 2025-3-22 04:07:35
extend great thanks to our staff for their careful perusal of the entire manuscript and for tracking errata and inaccuracies. Our most heartfelt thank extends again to our “typesetting perfectionist”, 1 withou978-3-7643-7472-3978-3-7643-7478-5myriad 发表于 2025-3-22 06:03:50
Book 20081st editionaluable suggestions for improvement, contributed essentially to the final version. We also extend great thanks to our staff for their careful perusal of the entire manuscript and for tracking errata and inaccuracies. Our most heartfelt thank extends again to our “typesetting perfectionist”, 1 withouInclement 发表于 2025-3-22 10:43:24
Herbert Amann,Joachim EscherCauchy’s integral theorems and the theory of holomorphic functions including the homological version of the residue theorem are derived as an application of the theory of line integrals.In addition toCeramic 发表于 2025-3-22 14:09:14
http://reply.papertrans.cn/16/1562/156129/156129_6.pngProgesterone 发表于 2025-3-22 20:27:36
Topics in Statistical Pattern Recognition,Integration was invented for finding the area of shapes. This, of course, is an ancient problem, and the basic strategy for solving it is equally old: divide the shape into rectangles and add up their areas.缩减了 发表于 2025-3-22 23:10:40
https://doi.org/10.1007/978-3-642-96303-2In Volume I, we used the differential calculus to extract deep insight about the “fine structure” of functions. In that process, the idea of linear approximations proved to be extremely effective. However, we have until now concentrated on functions of one variable.以烟熏消毒 发表于 2025-3-23 01:43:28
http://reply.papertrans.cn/16/1562/156129/156129_9.png不感兴趣 发表于 2025-3-23 06:27:43
http://reply.papertrans.cn/16/1562/156129/156129_10.png