补给线 发表于 2025-3-21 18:21:01
书目名称An Introductory Course in Lebesgue Spaces影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0155613<br><br> <br><br>潜伏期 发表于 2025-3-22 00:14:38
http://reply.papertrans.cn/16/1557/155613/155613_2.pngBinge-Drinking 发表于 2025-3-22 01:59:50
CMS Books in Mathematicshttp://image.papertrans.cn/a/image/155613.jpgGlower 发表于 2025-3-22 08:19:15
http://reply.papertrans.cn/16/1557/155613/155613_4.png不公开 发表于 2025-3-22 10:43:14
http://reply.papertrans.cn/16/1557/155613/155613_5.png流利圆滑 发表于 2025-3-22 13:04:30
https://doi.org/10.1007/978-3-319-30034-4Convex functions; Lebesgue spaces; Lorentz spaces; Variable exponent Lebesgue spaces; Grand Lebesgue spa畏缩 发表于 2025-3-22 19:19:39
http://reply.papertrans.cn/16/1557/155613/155613_7.png混杂人 发表于 2025-3-23 00:44:28
https://doi.org/10.1007/978-3-8349-6213-3important tools in Analysis in general and not only in Convex Analysis. In this chapter we will introduce the notion of convexity in its various formulations, and we give some characterizations of convex functions and a few applications of convexity, namely, some classical inequalities as well as no挥舞 发表于 2025-3-23 04:57:49
https://doi.org/10.1007/978-3-322-98947-5erties of the spaces, e.g., completeness, separability, duality, and embedding. We also examine the validity of Hölder, Minkowski, Hardy, and Hilbert inequality which are related to the aforementioned spaces. Although Lebesgue sequence spaces can be obtained from Lebesgue spaces using a discrete mea小画像 发表于 2025-3-23 07:06:58
http://reply.papertrans.cn/16/1557/155613/155613_10.png