补给线
发表于 2025-3-21 18:21:01
书目名称An Introductory Course in Lebesgue Spaces影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0155613<br><br> <br><br>书目名称An Introductory Course in Lebesgue Spaces读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0155613<br><br> <br><br>
潜伏期
发表于 2025-3-22 00:14:38
http://reply.papertrans.cn/16/1557/155613/155613_2.png
Binge-Drinking
发表于 2025-3-22 01:59:50
CMS Books in Mathematicshttp://image.papertrans.cn/a/image/155613.jpg
Glower
发表于 2025-3-22 08:19:15
http://reply.papertrans.cn/16/1557/155613/155613_4.png
不公开
发表于 2025-3-22 10:43:14
http://reply.papertrans.cn/16/1557/155613/155613_5.png
流利圆滑
发表于 2025-3-22 13:04:30
https://doi.org/10.1007/978-3-319-30034-4Convex functions; Lebesgue spaces; Lorentz spaces; Variable exponent Lebesgue spaces; Grand Lebesgue spa
畏缩
发表于 2025-3-22 19:19:39
http://reply.papertrans.cn/16/1557/155613/155613_7.png
混杂人
发表于 2025-3-23 00:44:28
https://doi.org/10.1007/978-3-8349-6213-3important tools in Analysis in general and not only in Convex Analysis. In this chapter we will introduce the notion of convexity in its various formulations, and we give some characterizations of convex functions and a few applications of convexity, namely, some classical inequalities as well as no
挥舞
发表于 2025-3-23 04:57:49
https://doi.org/10.1007/978-3-322-98947-5erties of the spaces, e.g., completeness, separability, duality, and embedding. We also examine the validity of Hölder, Minkowski, Hardy, and Hilbert inequality which are related to the aforementioned spaces. Although Lebesgue sequence spaces can be obtained from Lebesgue spaces using a discrete mea
小画像
发表于 2025-3-23 07:06:58
http://reply.papertrans.cn/16/1557/155613/155613_10.png