Thoracic 发表于 2025-3-21 17:01:45
书目名称An Introduction to the Theory of Groups影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0155600<br><br> <br><br>书目名称An Introduction to the Theory of Groups影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0155600<br><br> <br><br>书目名称An Introduction to the Theory of Groups网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0155600<br><br> <br><br>书目名称An Introduction to the Theory of Groups网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0155600<br><br> <br><br>书目名称An Introduction to the Theory of Groups被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0155600<br><br> <br><br>书目名称An Introduction to the Theory of Groups被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0155600<br><br> <br><br>书目名称An Introduction to the Theory of Groups年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0155600<br><br> <br><br>书目名称An Introduction to the Theory of Groups年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0155600<br><br> <br><br>书目名称An Introduction to the Theory of Groups读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0155600<br><br> <br><br>书目名称An Introduction to the Theory of Groups读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0155600<br><br> <br><br>高射炮 发表于 2025-3-21 22:08:11
http://reply.papertrans.cn/16/1556/155600/155600_2.pngJOT 发表于 2025-3-22 02:02:10
http://reply.papertrans.cn/16/1556/155600/155600_3.pngAlbinism 发表于 2025-3-22 08:01:42
http://reply.papertrans.cn/16/1556/155600/155600_4.png净礼 发表于 2025-3-22 09:34:37
,Unternehmung und Unternehmungsführung,We now drop the * notation for the operation in a group. Henceforth, we shall write . instead of . * ., and we shall denote the identity element by 1 instead of by ..nonplus 发表于 2025-3-22 13:24:52
http://reply.papertrans.cn/16/1556/155600/155600_6.pngCardiac 发表于 2025-3-22 18:19:32
http://reply.papertrans.cn/16/1556/155600/155600_7.pngVsd168 发表于 2025-3-22 22:52:57
https://doi.org/10.1007/978-3-658-00313-5We begin this chapter with a brief history of the study of roots of polynomials. Mathematicians of the Middle Ages, and probably those in Babylonia, knew the . giving the roots of a quadratic polynomial .(.) = .. + . + .. Setting . transforms .(.) into a polynomial g(.) with no . term:institute 发表于 2025-3-23 02:20:14
http://reply.papertrans.cn/16/1556/155600/155600_9.pngMendicant 发表于 2025-3-23 06:30:06
http://reply.papertrans.cn/16/1556/155600/155600_10.png