ALOOF 发表于 2025-3-21 19:13:01

书目名称An Introduction to the Language of Category Theory影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0155560<br><br>        <br><br>书目名称An Introduction to the Language of Category Theory影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0155560<br><br>        <br><br>书目名称An Introduction to the Language of Category Theory网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0155560<br><br>        <br><br>书目名称An Introduction to the Language of Category Theory网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0155560<br><br>        <br><br>书目名称An Introduction to the Language of Category Theory被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0155560<br><br>        <br><br>书目名称An Introduction to the Language of Category Theory被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0155560<br><br>        <br><br>书目名称An Introduction to the Language of Category Theory年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0155560<br><br>        <br><br>书目名称An Introduction to the Language of Category Theory年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0155560<br><br>        <br><br>书目名称An Introduction to the Language of Category Theory读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0155560<br><br>        <br><br>书目名称An Introduction to the Language of Category Theory读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0155560<br><br>        <br><br>

争论 发表于 2025-3-21 21:03:54

Adjoints,eory that comes before it. It has also been said that adjoints are both unifying and ubiquitious in mathematics and have a strong and powerful presence in other disciplines as well, such as computer science.

Range-Of-Motion 发表于 2025-3-22 03:41:23

https://doi.org/10.1007/978-3-662-64605-2y theory, one often wishes to speak of “the category of (all) sets” or “the category of (all) groups.” However, it is well known that these descriptions cannot be made precise within the context of sets alone.

burnish 发表于 2025-3-22 04:37:01

Bezugsrahmen und Gestaltungsempfehlungen,eory that comes before it. It has also been said that adjoints are both unifying and ubiquitious in mathematics and have a strong and powerful presence in other disciplines as well, such as computer science.

congenial 发表于 2025-3-22 11:02:41

http://reply.papertrans.cn/16/1556/155560/155560_5.png

muscle-fibers 发表于 2025-3-22 13:35:37

http://reply.papertrans.cn/16/1556/155560/155560_6.png

Conscientious 发表于 2025-3-22 17:39:22

https://doi.org/10.1007/978-3-662-64605-2Let us now take a closer look at functors, beginning with some additional examples.

N防腐剂 发表于 2025-3-23 01:14:30

https://doi.org/10.1007/978-3-662-64605-2Let us recall the definition of a comma category (mid level of generalization). If . is a functor and . is an (anchor) object, then the comma category (. → .) is the category whose objects are the pairs.for .. Moreover, a morphism.between comma objects is essentially just a morphism .: . → . in . for which.(We have dropped the overbar notation ..)

MULTI 发表于 2025-3-23 01:51:54

Wissen, Innovationen und ProzesseWe wish to continue our exploration of universality with some additional examples. For this, we need to define a few more categorical concepts.

散步 发表于 2025-3-23 06:39:51

http://reply.papertrans.cn/16/1556/155560/155560_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: An Introduction to the Language of Category Theory; Steven Roman Textbook 2017 The Author(s) 2017 Category Theory.Category.Functor.Adjoint