Pituitary-Gland 发表于 2025-3-25 03:43:14

http://reply.papertrans.cn/16/1556/155553/155553_21.png

胖人手艺好 发表于 2025-3-25 10:29:10

http://reply.papertrans.cn/16/1556/155553/155553_22.png

绝食 发表于 2025-3-25 15:29:26

Der deutsch-österreichische Postvereinntroduce the horizontal subbundle (which we think of as .) and present the Carnot-Carathéodory metric as the least time required to travel between two given points at unit speed along horizontal paths. Subsequently we introduce the notion of sub-Riemannian metric and show how it arises from degenera

BATE 发表于 2025-3-25 19:43:55

Der deutsch-österreichische Postvereinchanging from point to point. If the constraints are too tight, then it may be impossible to join any two points with an admissible trajectory, hence one needs to find conditions on the constraints implying “horizontal accessibility”.

Desert 发表于 2025-3-25 23:49:07

http://reply.papertrans.cn/16/1556/155553/155553_25.png

我不怕牺牲 发表于 2025-3-26 00:24:32

http://reply.papertrans.cn/16/1556/155553/155553_26.png

cruise 发表于 2025-3-26 06:32:59

https://doi.org/10.1007/978-3-642-45719-7ity. As shown in Section 7.1, the best constant for the isoperimetric inequality agrees with the best constant for the geometric (.-) Sobolev inequality. Recall that in the context of the Heisenberg group, the .-Sobolev inequalities take the form . In this chapter we discuss sharp constants for othe

radiograph 发表于 2025-3-26 12:08:59

An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem978-3-7643-8133-2Series ISSN 0743-1643 Series E-ISSN 2296-505X

TIA742 发表于 2025-3-26 15:26:38

http://reply.papertrans.cn/16/1556/155553/155553_29.png

Genome 发表于 2025-3-26 19:14:39

http://reply.papertrans.cn/16/1556/155553/155553_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem; Luca Capogna,Scott D. Pauls,Donatella Danielli,Jer B