Detrusor-Muscle 发表于 2025-3-21 19:42:30

书目名称An Introduction to Ultrametric Summability Theory影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0155523<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0155523<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0155523<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0155523<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0155523<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0155523<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0155523<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0155523<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0155523<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0155523<br><br>        <br><br>

扔掉掐死你 发表于 2025-3-21 23:44:51

http://reply.papertrans.cn/16/1556/155523/155523_2.png

Ingest 发表于 2025-3-22 03:03:14

http://reply.papertrans.cn/16/1556/155523/155523_3.png

的是兄弟 发表于 2025-3-22 06:58:06

Book 2014f analysis (ultrametric analysis). Several mathematicians have contributed to summability theory as well as functional analysis. The book will appeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis.

屈尊 发表于 2025-3-22 09:48:31

http://reply.papertrans.cn/16/1556/155523/155523_5.png

harrow 发表于 2025-3-22 12:59:36

http://reply.papertrans.cn/16/1556/155523/155523_6.png

聪明 发表于 2025-3-22 18:30:35

http://reply.papertrans.cn/16/1556/155523/155523_7.png

Encapsulate 发表于 2025-3-23 00:00:17

Ultrametric Functional Analysis,troduced and Ingleton’s version of the Hahn-Banach theorem is proved. The classical “convexity” does not work in the ultrametric set up and it is replaced by the notion of “.-convexity”, which is briefly discussed at the end of the chapter.

gnarled 发表于 2025-3-23 04:43:06

P.N. NatarajanStudies ultrametric analysis, an emerging branch of mathematics.Introduces the concepts of ultrametric summability theory—a fusion of summability theory and ultrametric analysis.Appeals to young resea

不能仁慈 发表于 2025-3-23 06:31:20

http://reply.papertrans.cn/16/1556/155523/155523_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: An Introduction to Ultrametric Summability Theory; P.N. Natarajan Book 2014 The Author(s) 2014 Functional Analysis.Matrix Methods.P-adic N