Detrusor-Muscle 发表于 2025-3-21 19:42:30
书目名称An Introduction to Ultrametric Summability Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0155523<br><br> <br><br>书目名称An Introduction to Ultrametric Summability Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0155523<br><br> <br><br>书目名称An Introduction to Ultrametric Summability Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0155523<br><br> <br><br>书目名称An Introduction to Ultrametric Summability Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0155523<br><br> <br><br>书目名称An Introduction to Ultrametric Summability Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0155523<br><br> <br><br>书目名称An Introduction to Ultrametric Summability Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0155523<br><br> <br><br>书目名称An Introduction to Ultrametric Summability Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0155523<br><br> <br><br>书目名称An Introduction to Ultrametric Summability Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0155523<br><br> <br><br>书目名称An Introduction to Ultrametric Summability Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0155523<br><br> <br><br>书目名称An Introduction to Ultrametric Summability Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0155523<br><br> <br><br>扔掉掐死你 发表于 2025-3-21 23:44:51
http://reply.papertrans.cn/16/1556/155523/155523_2.pngIngest 发表于 2025-3-22 03:03:14
http://reply.papertrans.cn/16/1556/155523/155523_3.png的是兄弟 发表于 2025-3-22 06:58:06
Book 2014f analysis (ultrametric analysis). Several mathematicians have contributed to summability theory as well as functional analysis. The book will appeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis.屈尊 发表于 2025-3-22 09:48:31
http://reply.papertrans.cn/16/1556/155523/155523_5.pngharrow 发表于 2025-3-22 12:59:36
http://reply.papertrans.cn/16/1556/155523/155523_6.png聪明 发表于 2025-3-22 18:30:35
http://reply.papertrans.cn/16/1556/155523/155523_7.pngEncapsulate 发表于 2025-3-23 00:00:17
Ultrametric Functional Analysis,troduced and Ingleton’s version of the Hahn-Banach theorem is proved. The classical “convexity” does not work in the ultrametric set up and it is replaced by the notion of “.-convexity”, which is briefly discussed at the end of the chapter.gnarled 发表于 2025-3-23 04:43:06
P.N. NatarajanStudies ultrametric analysis, an emerging branch of mathematics.Introduces the concepts of ultrametric summability theory—a fusion of summability theory and ultrametric analysis.Appeals to young resea不能仁慈 发表于 2025-3-23 06:31:20
http://reply.papertrans.cn/16/1556/155523/155523_10.png