Opulent 发表于 2025-3-21 16:32:01

书目名称An Introduction to Ultrametric Summability Theory影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0155522<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0155522<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0155522<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0155522<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0155522<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0155522<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0155522<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0155522<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0155522<br><br>        <br><br>书目名称An Introduction to Ultrametric Summability Theory读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0155522<br><br>        <br><br>

Cocker 发表于 2025-3-21 22:38:01

Ultrametric Functional Analysis,ic set up too. However, the Hahn–Banach theorem fails to hold. To salvage the Hahn–Banach theorem, the concept of a “spherically complete field” is introduced and Ingleton’s version of the Hahn–Banach theorem is proved. The classical “convexity” does not work in the ultrametric set up and it is repl

detach 发表于 2025-3-22 03:43:51

http://reply.papertrans.cn/16/1556/155522/155522_3.png

笨重 发表于 2025-3-22 05:06:33

http://reply.papertrans.cn/16/1556/155522/155522_4.png

懒鬼才会衰弱 发表于 2025-3-22 10:56:17

Ultrametric Summability Theory,n the topic) to the present. In the present chapter, Silverman–Toeplitz theorem is proved using the “sliding-hump method”. Schur’s theorem and Steinhaus theorem also find a mention. Core of a sequence and Knopp’s core theorem is discussed. It is proved that certain Steinhaus-type theorems fail to hold.

Fsh238 发表于 2025-3-22 12:53:02

http://reply.papertrans.cn/16/1556/155522/155522_6.png

皮萨 发表于 2025-3-22 20:41:45

http://reply.papertrans.cn/16/1556/155522/155522_7.png

Diverticulitis 发表于 2025-3-22 22:43:12

http://reply.papertrans.cn/16/1556/155522/155522_8.png

他一致 发表于 2025-3-23 02:53:49

https://doi.org/10.1007/978-81-322-2559-1Archimedean axiom; Canonical expansion; Double sequences; Hahn-Banach theorem; Schur‘s theorem; The Nörlu

dilute 发表于 2025-3-23 09:07:07

http://reply.papertrans.cn/16/1556/155522/155522_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: An Introduction to Ultrametric Summability Theory; P.N. Natarajan Book 2015Latest edition The Editor(s) (if applicable) and The Author(s),