粗略 发表于 2025-3-21 17:41:17
书目名称An Introduction to Tensors and Group Theory for Physicists影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0155509<br><br> <br><br>生命 发表于 2025-3-21 22:28:10
http://reply.papertrans.cn/16/1556/155509/155509_2.pnghurricane 发表于 2025-3-22 01:27:19
http://reply.papertrans.cn/16/1556/155509/155509_3.pngquiet-sleep 发表于 2025-3-22 08:28:43
http://reply.papertrans.cn/16/1556/155509/155509_4.png烧烤 发表于 2025-3-22 10:31:57
http://reply.papertrans.cn/16/1556/155509/155509_5.pngYourself 发表于 2025-3-22 15:43:22
978-3-319-33089-1Springer International Publishing Switzerland 2015注视 发表于 2025-3-22 20:08:27
http://reply.papertrans.cn/16/1556/155509/155509_7.png极少 发表于 2025-3-23 00:50:22
A Quick Introduction to Tensorsfference between a second rank tensor and a matrix. We also demonstrate how second rank tensors are related to linear operators. We then make these considerations concrete by applying them to the moment of inertia tensor from classical mechanics.漂亮 发表于 2025-3-23 02:52:08
http://reply.papertrans.cn/16/1556/155509/155509_9.pngconduct 发表于 2025-3-23 09:09:55
http://reply.papertrans.cn/16/1556/155509/155509_10.png