粗略
发表于 2025-3-21 17:41:17
书目名称An Introduction to Tensors and Group Theory for Physicists影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0155509<br><br> <br><br>书目名称An Introduction to Tensors and Group Theory for Physicists读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0155509<br><br> <br><br>
生命
发表于 2025-3-21 22:28:10
http://reply.papertrans.cn/16/1556/155509/155509_2.png
hurricane
发表于 2025-3-22 01:27:19
http://reply.papertrans.cn/16/1556/155509/155509_3.png
quiet-sleep
发表于 2025-3-22 08:28:43
http://reply.papertrans.cn/16/1556/155509/155509_4.png
烧烤
发表于 2025-3-22 10:31:57
http://reply.papertrans.cn/16/1556/155509/155509_5.png
Yourself
发表于 2025-3-22 15:43:22
978-3-319-33089-1Springer International Publishing Switzerland 2015
注视
发表于 2025-3-22 20:08:27
http://reply.papertrans.cn/16/1556/155509/155509_7.png
极少
发表于 2025-3-23 00:50:22
A Quick Introduction to Tensorsfference between a second rank tensor and a matrix. We also demonstrate how second rank tensors are related to linear operators. We then make these considerations concrete by applying them to the moment of inertia tensor from classical mechanics.
漂亮
发表于 2025-3-23 02:52:08
http://reply.papertrans.cn/16/1556/155509/155509_9.png
conduct
发表于 2025-3-23 09:09:55
http://reply.papertrans.cn/16/1556/155509/155509_10.png