Concave 发表于 2025-3-21 18:08:37
书目名称An Introduction to Riemann-Finsler Geometry影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0155463<br><br> <br><br>书目名称An Introduction to Riemann-Finsler Geometry影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0155463<br><br> <br><br>书目名称An Introduction to Riemann-Finsler Geometry网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0155463<br><br> <br><br>书目名称An Introduction to Riemann-Finsler Geometry网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0155463<br><br> <br><br>书目名称An Introduction to Riemann-Finsler Geometry被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0155463<br><br> <br><br>书目名称An Introduction to Riemann-Finsler Geometry被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0155463<br><br> <br><br>书目名称An Introduction to Riemann-Finsler Geometry年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0155463<br><br> <br><br>书目名称An Introduction to Riemann-Finsler Geometry年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0155463<br><br> <br><br>书目名称An Introduction to Riemann-Finsler Geometry读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0155463<br><br> <br><br>书目名称An Introduction to Riemann-Finsler Geometry读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0155463<br><br> <br><br>原来 发表于 2025-3-21 23:40:48
An Introduction to Riemann-Finsler Geometry978-1-4612-1268-3Series ISSN 0072-5285 Series E-ISSN 2197-5612capsule 发表于 2025-3-22 03:25:47
http://reply.papertrans.cn/16/1555/155463/155463_3.png元音 发表于 2025-3-22 05:13:16
https://doi.org/10.1007/978-3-8350-9542-7s, we only use objects which are invariant under positive rescaling in .. Consequently, our treatment using natural coordinates on . can be regarded as occurring on the (projective) sphere bundle ., in the context of homogeneous coordinates.他一致 发表于 2025-3-22 10:03:13
http://reply.papertrans.cn/16/1555/155463/155463_5.pngRct393 发表于 2025-3-22 15:09:30
Zusammenfassende Bewertung der Ergebnisse,tive there is the identity; see §5.3. Thus, for . small enough, not only does exp. makes sense, it is also diffeomorphic to S... The image set . is called a . in . centered at .. We later show why it can be said to have radius equal to ..overweight 发表于 2025-3-22 17:03:10
http://reply.papertrans.cn/16/1555/155463/155463_7.pngAnticonvulsants 发表于 2025-3-23 00:27:38
https://doi.org/10.1007/978-1-4612-1268-3Calc; DEX; Jacobi; Lemma; Natural; Riemann-Finsler Geometry; Riemannian Geometry; Volume; calculus; calculusCongruous 发表于 2025-3-23 04:14:44
978-1-4612-7070-6Springer Science+Business Media New York 2000Conducive 发表于 2025-3-23 08:59:20
http://reply.papertrans.cn/16/1555/155463/155463_10.png