GOLF
发表于 2025-3-21 20:09:27
书目名称An Introduction to Quasisymmetric Schur Functions影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0155448<br><br> <br><br>书目名称An Introduction to Quasisymmetric Schur Functions影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0155448<br><br> <br><br>书目名称An Introduction to Quasisymmetric Schur Functions网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0155448<br><br> <br><br>书目名称An Introduction to Quasisymmetric Schur Functions网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0155448<br><br> <br><br>书目名称An Introduction to Quasisymmetric Schur Functions被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0155448<br><br> <br><br>书目名称An Introduction to Quasisymmetric Schur Functions被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0155448<br><br> <br><br>书目名称An Introduction to Quasisymmetric Schur Functions年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0155448<br><br> <br><br>书目名称An Introduction to Quasisymmetric Schur Functions年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0155448<br><br> <br><br>书目名称An Introduction to Quasisymmetric Schur Functions读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0155448<br><br> <br><br>书目名称An Introduction to Quasisymmetric Schur Functions读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0155448<br><br> <br><br>
出处
发表于 2025-3-21 23:39:00
Hopf algebras,s, Sym, the Hopf algebra of quasisymmetric functions, QSym, and the Hopf algebra of noncommutative symmetric functions, NSym. In each case we describe pertinent bases, the product, the coproduct and the antipode. Once defined we see how Sym is a subalgebra of QSym, and a quotient of NSym. We also di
调整校对
发表于 2025-3-22 02:45:50
http://reply.papertrans.cn/16/1555/155448/155448_3.png
adjacent
发表于 2025-3-22 05:24:20
http://reply.papertrans.cn/16/1555/155448/155448_4.png
FLINT
发表于 2025-3-22 09:14:37
http://reply.papertrans.cn/16/1555/155448/155448_5.png
Arroyo
发表于 2025-3-22 15:32:05
http://reply.papertrans.cn/16/1555/155448/155448_6.png
恫吓
发表于 2025-3-22 20:13:31
Hopf algebras,scuss the duality of QSym and NSym and a variety of automorphisms on each. We end by defining combinatorial Hopf algebras and discussing the role QSym plays as the terminal object in the category of all combinatorial Hopf algebras.
Provenance
发表于 2025-3-22 21:42:47
http://reply.papertrans.cn/16/1555/155448/155448_8.png
充足
发表于 2025-3-23 03:26:57
http://reply.papertrans.cn/16/1555/155448/155448_9.png
Meager
发表于 2025-3-23 08:16:59
http://reply.papertrans.cn/16/1555/155448/155448_10.png