postpartum 发表于 2025-3-21 19:45:57

书目名称An Introduction to Mathematical Relativity影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0155345<br><br>        <br><br>书目名称An Introduction to Mathematical Relativity影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0155345<br><br>        <br><br>书目名称An Introduction to Mathematical Relativity网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0155345<br><br>        <br><br>书目名称An Introduction to Mathematical Relativity网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0155345<br><br>        <br><br>书目名称An Introduction to Mathematical Relativity被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0155345<br><br>        <br><br>书目名称An Introduction to Mathematical Relativity被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0155345<br><br>        <br><br>书目名称An Introduction to Mathematical Relativity年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0155345<br><br>        <br><br>书目名称An Introduction to Mathematical Relativity年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0155345<br><br>        <br><br>书目名称An Introduction to Mathematical Relativity读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0155345<br><br>        <br><br>书目名称An Introduction to Mathematical Relativity读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0155345<br><br>        <br><br>

厌倦吗你 发表于 2025-3-21 20:32:32

http://reply.papertrans.cn/16/1554/155345/155345_2.png

警告 发表于 2025-3-22 02:22:26

http://reply.papertrans.cn/16/1554/155345/155345_3.png

FELON 发表于 2025-3-22 07:22:59

http://reply.papertrans.cn/16/1554/155345/155345_4.png

grudging 发表于 2025-3-22 09:54:23

http://reply.papertrans.cn/16/1554/155345/155345_5.png

书法 发表于 2025-3-22 14:51:33

http://reply.papertrans.cn/16/1554/155345/155345_6.png

联想 发表于 2025-3-22 20:41:26

http://reply.papertrans.cn/16/1554/155345/155345_7.png

EWE 发表于 2025-3-23 00:44:34

http://reply.papertrans.cn/16/1554/155345/155345_8.png

cajole 发表于 2025-3-23 02:33:31

Textbook 2021tial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either inRiemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book..

热烈的欢迎 发表于 2025-3-23 07:15:10

Implikationen und Schlussbetrachtungen,h timelike and null geodesics cannot be continued. The singularity theorems of Hawking and Penrose, proved in this chapter, show that this is a generic phenomenon: any sufficiently small perturbation of these singular solutions will still be singular.
页: [1] 2 3 4
查看完整版本: Titlebook: An Introduction to Mathematical Relativity; José Natário Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive li