postpartum 发表于 2025-3-21 19:45:57
书目名称An Introduction to Mathematical Relativity影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0155345<br><br> <br><br>书目名称An Introduction to Mathematical Relativity影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0155345<br><br> <br><br>书目名称An Introduction to Mathematical Relativity网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0155345<br><br> <br><br>书目名称An Introduction to Mathematical Relativity网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0155345<br><br> <br><br>书目名称An Introduction to Mathematical Relativity被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0155345<br><br> <br><br>书目名称An Introduction to Mathematical Relativity被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0155345<br><br> <br><br>书目名称An Introduction to Mathematical Relativity年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0155345<br><br> <br><br>书目名称An Introduction to Mathematical Relativity年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0155345<br><br> <br><br>书目名称An Introduction to Mathematical Relativity读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0155345<br><br> <br><br>书目名称An Introduction to Mathematical Relativity读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0155345<br><br> <br><br>厌倦吗你 发表于 2025-3-21 20:32:32
http://reply.papertrans.cn/16/1554/155345/155345_2.png警告 发表于 2025-3-22 02:22:26
http://reply.papertrans.cn/16/1554/155345/155345_3.pngFELON 发表于 2025-3-22 07:22:59
http://reply.papertrans.cn/16/1554/155345/155345_4.pnggrudging 发表于 2025-3-22 09:54:23
http://reply.papertrans.cn/16/1554/155345/155345_5.png书法 发表于 2025-3-22 14:51:33
http://reply.papertrans.cn/16/1554/155345/155345_6.png联想 发表于 2025-3-22 20:41:26
http://reply.papertrans.cn/16/1554/155345/155345_7.pngEWE 发表于 2025-3-23 00:44:34
http://reply.papertrans.cn/16/1554/155345/155345_8.pngcajole 发表于 2025-3-23 02:33:31
Textbook 2021tial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either inRiemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book..热烈的欢迎 发表于 2025-3-23 07:15:10
Implikationen und Schlussbetrachtungen,h timelike and null geodesics cannot be continued. The singularity theorems of Hawking and Penrose, proved in this chapter, show that this is a generic phenomenon: any sufficiently small perturbation of these singular solutions will still be singular.